Advertisement

Ionics

, Volume 20, Issue 3, pp 315–321 | Cite as

Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin

  • Arun Kumar Varanasi
  • Arghya Bhowmik
  • Tanmay Sarkar
  • Umesh V. Waghmare
  • Mridula Dixit Bharadwaj
Original Paper

Abstract

With a goal to improve the performance of LiCoO2 as a cathode material in Li-ion batteries, we simulate substitution of various elements (X = Be, Mg, Al, Ga, Si and Ti) for Co using first-principles density functional theory and predict changes in its electrochemical potential. While the electrochemical potential of LiCoO2 is enhanced with substitution of Be, Mg, Al and Ga for Co, an opposite effect is predicted of Si and Ti substitution. We determine the electronic origin of these changes in electrochemical potential using (a) Bader method of topological analysis of charge density, (b) partial density of electronic states to estimate oxidation states of metal and oxygen, and charge re-distribution upon lithiation. We find that the distribution of electronic charge donated by Li is influenced by the nature of the X–O bond. A larger electron transfer to O (in XO6 octahedron) upon lithiation leads to stronger Li intercalation and thereby higher electrochemical voltage. Our findings provide a platform for a rational design of cathode materials in Li batteries with enhanced voltage.

Keywords

Lithium-ion battery cathode Density functional theory Bader charge analysis Electrochemical potential 

Notes

Acknowledgments

We express our gratitude to N. Balasubramanian, R. Krishnan, V.S. Arunachalam of CSTEP and AK Shukla (SSCU, IISc) for their advice during this study. This work was partly funded by the DRDO, India via the grant ERIP/ER/0906002/M/01/1201. Part of this work was supported under the US-India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012.

References

  1. 1.
    Ebner W, Fouchard D, Xie L (1994) The LiNiO2/carbon lithium ion battery. Solid State Ionics 69:238–256CrossRefGoogle Scholar
  2. 2.
    Shukla AK, Prem Kumar T (2008) Materials for next generation lithium batteries. Curr Sci 94:314–331Google Scholar
  3. 3.
    Vogler C, Hemmer R, Arnold G, Trepo A, Wohlfahrt-Mehrens M (1999) Lithium nickel oxide Li(Ni0.75Al0.17Co0.08)O2 as cathode material for lithium ion batteries. Ionics 5:421–425CrossRefGoogle Scholar
  4. 4.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRefGoogle Scholar
  5. 5.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  6. 6.
    Chen H, Wu L, Zhang L, Zhu Y, Grey CP (2010) LiCoO2 concaved cuboctahedrons from symmetry-controlled topological reactions. J Am Chem Soc 133:262–270CrossRefGoogle Scholar
  7. 7.
    Li H, Chen G, Zhang B, Xu J (2008) Advanced electrochemical performance of Li(Ni(1/3−x)FexCo1/3Mn1/3)O2 as cathode materials for lithium-ion battery. Solid State Commun 146:115–120CrossRefGoogle Scholar
  8. 8.
    Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YL, Huang B (1998) Identification of cathode materials for lithium batteries guided by first principles calculations. Nature 392:694–696CrossRefGoogle Scholar
  9. 9.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  10. 10.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  11. 11.
    Yi TF, Zhu YR, Zhu RS (2008) Density functional theory study of lithium intercalation for 5 V LiNi0.5Mn1.5O4 cathode materials. Solid State Ionics 179:2132–2136CrossRefGoogle Scholar
  12. 12.
    Ceder G, Aydinol MK, Kohan AF (1997) Application of first-principles calculations to the design of rechargeable Li-batteries. Comput Mat Sci 8:161–169CrossRefGoogle Scholar
  13. 13.
    Kramer D, Ceder G (2009) Tailoring the morphology of LiCoO2: a first principles study. Chem Mater 21:3799–3809CrossRefGoogle Scholar
  14. 14.
    Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRefGoogle Scholar
  15. 15.
    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354–1365CrossRefGoogle Scholar
  16. 16.
    Zhou F, Kang K, Maxisch T, Ceder G, Morgan D (2004) The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun 132:181–186CrossRefGoogle Scholar
  17. 17.
    Van der Ven A, Ceder G (2000) Lithium diffusion in layered LixCoO2. Electrochem Solid-State Lett 3:301–304Google Scholar
  18. 18.
    Ning G, Popov BN (2004) Cycle life modeling of lithium-ion batteries. J Electrochem Soc 151:A1584–A1591CrossRefGoogle Scholar
  19. 19.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University, New YorkGoogle Scholar
  20. 20.
    Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  22. 22.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  23. 23.
    Jin Y, Lin P, Chen CH (2006) An investigation of silicon doped LiCoO2 as cathode in lithium-ion secondary batteries. Solid State Ionics 177:317–322CrossRefGoogle Scholar
  24. 24.
    Lala SM, Montoro LA, Lemos V, Abbate M, Rosolen JM (2005) The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO2. Electrochim Acta 51:7–13CrossRefGoogle Scholar
  25. 25.
    Gopukumar S, Jeong Y, Kim KB (2003) Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ionics 159:223–232CrossRefGoogle Scholar
  26. 26.
    Gonzalo EC, Morán E, Parada C, Ehrenberg H (2010) Microwave-assisted synthesis of LiCoO2 and LiCo1-xGaxO2: structural features, magnetism and electrochemical characterization. Mater Chem Phys 121:484–488CrossRefGoogle Scholar
  27. 27.
    Sathiyamoorthi R, Shakkthivel P, Gangadharan R, Vasudevan T (2007) Layered LiCo1-xMgxO2 (x = 0.0,0.1,0.2,0.3 and 0.5) cathode materials for lithium ion rechargeable batteries. Ionics 13:25–33CrossRefGoogle Scholar
  28. 28.
    Tang W, Sanville E, Henkelman G (2009) A grid based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21:084204CrossRefGoogle Scholar
  29. 29.
    Pavone M, Ritzmann AM, Carter EA (2011) Quantum mechanics based design principles for solid oxide fuel cell cathode materials. Energy Environ Sci 4:4933–4937CrossRefGoogle Scholar
  30. 30.
    Thirunakaran R, Kalaiselvi N, Periaswamy P, Renganathan NG (2003) Mg substituted LiCoO2 for reversible lithium intercalation. Ionics 9:388–394CrossRefGoogle Scholar
  31. 31.
    Myung S, Kumagai N, Komaba S, Chung H (2001) Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics 139:47–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arun Kumar Varanasi
    • 1
  • Arghya Bhowmik
    • 1
  • Tanmay Sarkar
    • 1
  • Umesh V. Waghmare
    • 2
  • Mridula Dixit Bharadwaj
    • 1
  1. 1.Center for Study of Science Technology & PolicyBangaloreIndia
  2. 2.Theoretical Sciences UnitJawaharlal Nehru Center for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations