Skip to main content
Log in

Di-urethanesil hybrid electrolytes doped with Mg(CF3SO3)2

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Two siloxane-based di-urethanesil frameworks incorporating poly(oxyethylene) (POE) chains have been synthesized by the sol–gel process and doped with magnesium triflate (Mg(CF3SO3)2) with the goal of developing electrolytes for the fabrication of solid-state rechargeable magnesium batteries. In these matrices, short POE chains are covalently bonded to the siloxane network via urethane linkages. The xerogels have been represented by the notation d-Ut(Y) n Mg(CF3SO3)2, where Y = 300 and 600 represents the average molecular weight of the POE chains and n stands for salt composition (molar ratio of OCH2CH2 units per Mg2+). Xerogels with compositions ranging from 2 ≤ n < ∞ were prepared. A crystalline POE/Mg(CF3SO3)2 complex of unknown stoichiometry is formed in the d-Ut(300) n Mg(CF3SO3)2 materials with n ≤ 6 and in the d-Ut(600) n Mg(CF3SO3)2 materials with n ≤ 5. The organically modified silicate electrolytes with the highest conductivity of the d-Ut(300) n Mg(CF3SO3)2 and d-Ut(600) n Mg(CF3SO3)2 series are the samples with n = 6 (3.9 × 10−8 S cm−1 at 26 °C and 8.7 × 10−5 S cm−1 at 97 °C) and n = 100 (2.63 × 10−7 S cm−1 at 20 °C and 1.4 × 10−5 S cm−1 at 85 °C), respectively. Since the electrolytes for Mg batteries that have been proposed up to now have many intrinsic problems and although the room temperature conductivity values exhibited by the systems developed in the present study are still low in view of practical application, this work opens new directions for the development of solid-state Mg ion electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (1990) Sol–gel Science: the physics and chemistry of sol–gel processing. Academic, San Diego, CA

    Google Scholar 

  2. Schubert U, Hüsing N, Lorenz A (1995) Chem Mater 7:2010

    Article  CAS  Google Scholar 

  3. Sanchez C, Ribot F, Lebeau B (1999) J Mater Chem 9:35

    Article  CAS  Google Scholar 

  4. Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Materials, B. K. Coltrain, C. Sanchez, D. W. Schaefer, G. L. Wilkes Eds.; Materials Research Society Series: Pittsburgh, PA, 1996, Vol. 435

  5. Hybrid Materials, R. Laine, C. Sanchez, C. J. Brinker, E. Gianellis Eds.; Materials Research Society Series: Pittsburgh, PA, 1998, Vol. 519

  6. Organic/Inorganic Hybrid Materials-2000, R. Laine, C. Sanchez, C. J. Brinker, E. Gianellis Eds.; Materials Research Society Series: Pittsburgh, PA, 2000, Vol. 628

  7. Organic–inorganic Hybrids for Photonics, L. Hubert, S. I. Najafi Eds.; SPIE - The International Society of Optical Engineering – Series: Bellingham, WA, 1998, Vol. 3469

  8. Sol–gel Optics V, B. S. Dunn, E. J. A. Pope, H. K. Schmidt, M. Yamane Eds.; SPIE - The International Society of Optical Engineering – Series: Bellingham, WA, 2000, Vol. 3943

  9. Stein A, Melde BJ, Schroden RC (2000) Adv Mater 12:1403

    Article  CAS  Google Scholar 

  10. Férey G (2001) Chem Mater 13:3084

    Article  Google Scholar 

  11. Y. Chujo, R. Tamaki, In Hybrid Organic–inorganic Materials, D. A. Loy Ed.; Mater. Res. Soc. Bull., 26 (2001) 389.

  12. Sanchez C, Soler-Illia GJdAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061

    Article  CAS  Google Scholar 

  13. Keeling-Tucker T, Brennan JD (2001) Special issue on Hybrid Organic–Inorganic Materials. Chem Mater 13:3331

    Article  CAS  Google Scholar 

  14. Green WH, Le KP, Grey J, Au TT, Sailor MJ (1997) Science 276:1826

    Article  CAS  Google Scholar 

  15. Lin J, Baerner K (2000) Mater Lett 46:86

    Article  CAS  Google Scholar 

  16. B. Arkles In Hybrid Organic–inorganic Materials, D. A. Loy, Ed.; Mater. Res. Soc. Bull. 26 (2001) 402

  17. Schottner G (2001) Chem Mater 13:3422

    Article  CAS  Google Scholar 

  18. Jeong Cho E, Bright FV (2002) Anal Chem 74:1462

    Article  Google Scholar 

  19. Gonçalves MC, de Zea Bermudez V, Ostrovskii D, Carlos LD (2002) Ionics 8(1&2):62

    Article  Google Scholar 

  20. Gonçalves MC, de Zea Bermudez V, Sá Ferreira RA, Carlos LD, Ostrovskii D, Rocha J (2004) Chem Mater 16(13):2530

    Article  Google Scholar 

  21. Gonçalves MC, Silva NJO, de Zea Bermudez V, Sá Ferreira RA, Carlos LD, Dahmouche K, Santilli CV, Ostrovskii D, Correia Vilela IC, Craievich AF (2005) J Phys Chem B 109:20093

    Article  Google Scholar 

  22. M. C. Gonçalves, V. de Zea Bermudez, R. A. Sá Ferreira, D. Ostrovskii, L. D. Carlos, In C. Sanchez, U. Schubert, R. M. Laine and Y. Chujo (eds) Organic/inorganic hybrid materials. Proceedings of the Materials Research Society, Boston, 2005, Vol. 847, pg. EE.13.1.1.

  23. Fernandes M, Gonçalves MC, de Zea Bermudez V, Charas A, Morgado J, Sá Ferreira RA, Carlos LD (2008) J Alloys Compds 451:201

    Article  CAS  Google Scholar 

  24. Fernandes M, Nobre SS, Gonçalves MC, Charas A, Morgado J, Ferreira RAS, Carlos LD, de Zea Bermudez V (2009) J Mater Chem 19:733

    Article  CAS  Google Scholar 

  25. Gonçalves MC, de Zea Bermudez V, Silva MM, Smith MJ, Morales E, Sá Ferreira RA, Carlos LD (2010) Ionics 16:193

    Article  Google Scholar 

  26. Gonçalves MC, Fernandes IC, Hümmer J, de Zea Bermudez V (2011) Vib Spectrosc 57:187

    Article  Google Scholar 

  27. Yang L, Huq R, Farrington GC (1986) Solid State Ionics 18&19:291

    Article  Google Scholar 

  28. Patrick A, Glasse M, Latham R, Linford R (1986) Solid State Ionics 18&19:1063

    Article  Google Scholar 

  29. Yang LL, McGhie AR, Farrington GC (1986) J Electrochem Soc 133(1):1380

    Article  CAS  Google Scholar 

  30. Kumar G, Sivashanugam A, Sridharan R (1993) J Eletrochem Soc 140(11):3087

    Article  CAS  Google Scholar 

  31. Acosta JL, Morales E (1998) Electrochim Acta 43(7):791

    CAS  Google Scholar 

  32. Di Noto V, Savina S, Longo D, Vidali M (1998) Electrochim Acta 43(10–11):1225

    Article  Google Scholar 

  33. Girish Kumar G, Munichandraiah N (1999) Electrochim Acta 44:2663

    Article  Google Scholar 

  34. Ikeda S, Mori Y, Furuhashi Y, Masuda H (1999) Solid State Ionics 121:329

    Article  CAS  Google Scholar 

  35. Girish Kumar G, Munichandraiah N (2000) Solid State Ionics 128:203

    Article  Google Scholar 

  36. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Nature 407:724

    Article  CAS  Google Scholar 

  37. Girish Kumar G, Munichandraiah N (2000) J Electroanal Chem 495:42

    Article  Google Scholar 

  38. Girish Kumar G, Munichandraiah N (2000) J Power Sources 91:157

    Article  Google Scholar 

  39. Mitra S, Shukla AK, Sampath S (2001) J Power Sources 101:213

    Article  CAS  Google Scholar 

  40. Girish Kumar G, Munichandraiah N (2002) Electrochim Acta 47:1013

    Article  Google Scholar 

  41. Mitra S, Sampath S (2002) J Mater Chem 12:2531

    Article  CAS  Google Scholar 

  42. Carlos LD, Sá Ferreira RA, Orion I, de Zea Bermudez V, Rocha J (2000) J Lumin 87–89:702

    Article  Google Scholar 

  43. Carlos LD, de Zea Bermudez V, Sá Ferreira RA, Marques L, Assunção M (1999) Chem Mater 11(3):581

    Article  CAS  Google Scholar 

  44. Teixeira JCS, Fernandes M, de Zea Bermudez V, Barbosa PC, Rodrigues LC, Silva MM, Smith MJ (2010) Electrochim Acta 55:1328

    Article  CAS  Google Scholar 

  45. de Zea Bermudez V, Poinsignon C, Armand MB (1997) J Mater Chem 7:1677

    Article  Google Scholar 

  46. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Solid State Ionics 11:91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, M.C., Rodrigues, L.C., Silva, M.M. et al. Di-urethanesil hybrid electrolytes doped with Mg(CF3SO3)2 . Ionics 20, 29–36 (2014). https://doi.org/10.1007/s11581-013-0959-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0959-1

Keywords

Navigation