, Volume 20, Issue 1, pp 73–81 | Cite as

Structural and optical properties of La and Gd substituted Bi4 − xMxV2O11 − δ (0.1 ≤ x ≤ 0.3)

Original Paper


Bi4 − xMxV2O11 − δ (M = La, Gd; 0.1 ≤ x ≤ 0.3) is synthesised by a solid state reaction method to study the effect of La3+ and Gd3+ substitution for Bi on the structural and optical properties. The as-prepared samples are characterised by X-ray diffraction, Fourier transform infrared analysis, UV–visible spectroscopy, scanning electron microscopy and energy-dispersive spectroscopy. The refinement results confirmed that even substituted samples exhibit monoclinic structure with space group C2/m. The parameters like band gap energy; Urbach energy has been calculated from the UV–visible spectra. It has been observed that even substitution at the bismuth site by isovalent cations decreases the energy band gap. The lowest observed band gap is 1.86 eV for Bi3.9La0.1V2O11 − δ. The grain size and defects were observed to increase with increasing substitution along with the amount of secondary phase.


Ceramics Optical properties Microstructure X-ray diffraction 


  1. 1.
    Subbanna GN, Ganapathi L (1987) Bull Mater Sci 9:29CrossRefGoogle Scholar
  2. 2.
    Vannier RN, Pernot E, Anne M, Isnard O, Nowogrocki G, Mairesse G (2003) Solid State Ion 157:147CrossRefGoogle Scholar
  3. 3.
    Mairesse G, Roussel P, Vannier RN, Anne M, Nowogrocki G (2003) Solid State Sci 5:861CrossRefGoogle Scholar
  4. 4.
    Kant R, Pandey OP, Singh K (2010) Ionics 10:277CrossRefGoogle Scholar
  5. 5.
    Kant R, Pandey OP, Singh K (2009) Ionics 15:567CrossRefGoogle Scholar
  6. 6.
    Paydar MH, Hadian AM, Fafilek G (2004) J Mat Sci 39:1357CrossRefGoogle Scholar
  7. 7.
    Vannier RN, Mairesse G, Abraham F, Nowogrocki G, Pernot E, Anne M, Bacmann M, Strobel P, Fouletier J (1995) Solid State Ion 78:18CrossRefGoogle Scholar
  8. 8.
    Zhou W, Jefferson DA, He H, Yuan J, Smih DJ (1997) Phil Mag Lett 75:105CrossRefGoogle Scholar
  9. 9.
    Deepti, Kant R, Singla ML, Singh K (2009) Curr Appl Phys 9:1467CrossRefGoogle Scholar
  10. 10.
    Tokunaga S, Kato H, Kudo A (2001) Chem Mater 13:4624CrossRefGoogle Scholar
  11. 11.
    Luo W, Tang J, Zou Z, Ye J (2008) J Alloys Compd 455:346CrossRefGoogle Scholar
  12. 12.
    Zhang C, Zhu Y (2005) Chem Mater 17:3537CrossRefGoogle Scholar
  13. 13.
    Fu H, Pan C, Zhang L, Zhu Y (2007) Mater Res Bull 42:696CrossRefGoogle Scholar
  14. 14.
    Cavalcante LS, Simoes AZ, Espinosa JWM, Santos LPS, Longo E, Varela JA, Pizani S (2008) J Alloys Compd 464:340CrossRefGoogle Scholar
  15. 15.
    Thakral V, Uma S (2010) Mater Res Bull 45:1250CrossRefGoogle Scholar
  16. 16.
    Kaur G, Pandey OP, Singh K (2012) Phys Status Solidi A 209:1231CrossRefGoogle Scholar
  17. 17.
    Viswanatahn M, Thutupalli GKM (1996) Solid State Commun 98:535CrossRefGoogle Scholar
  18. 18.
    Abrahams I, Bush AJ, Krok F, Hawkes GE, Sales KD, Thornton P, Boguszb W (1998) J Mater Chem 8:1213CrossRefGoogle Scholar
  19. 19.
    Joubert A, Jouarmeaux A, GarmeMa~dals M (1994) Mater Res Bull 29:175CrossRefGoogle Scholar
  20. 20.
    Sooryanarayana K, Guru Rowl TN, Varma KBR (1997) Mater Res Bull 32:1651CrossRefGoogle Scholar
  21. 21.
    Shannon RD (1976) Acta Crystallogr A32:751CrossRefGoogle Scholar
  22. 22.
    Bhattacharya AK, Chand S, Mallick KK, Talayan RS (1992) Appl Catal Gen 85:135CrossRefGoogle Scholar
  23. 23.
    Singla G, Jha PK, Gill JK, Singh K (2012) Ceram Int 38:2065CrossRefGoogle Scholar
  24. 24.
    Gill JK, Pandey OP, Singh K (2011) Solid State Sci 13:1960CrossRefGoogle Scholar
  25. 25.
    Rojas SS, Souza JED, Andreeta MRB, Hernandes AC (2010) J Non-Cryst Solids 356:2942CrossRefGoogle Scholar
  26. 26.
    Punia R, Kundu RS, Hooda J, Dhankhar S, Dahiya S, Kishore N (2011) J Appl Phys 110:0335271CrossRefGoogle Scholar
  27. 27.
    Pal I, Aggarwal A, Sanghi S, Aggarwal MP (2012) Opt Mater 34:1171CrossRefGoogle Scholar
  28. 28.
    ElBatal FH, Marzouk MA, Abdelghany AM (2011) J Mater Sci 46:5140CrossRefGoogle Scholar
  29. 29.
    Webster S, Czerw R, Nesper R, Dimaio J, Xu JF, Ballato J, Carroll DL (2004) J Nanosci Nanotech 4:260CrossRefGoogle Scholar
  30. 30.
    Urca ASÏ, Orel B (1999) Electrochim Acta 44:3051CrossRefGoogle Scholar
  31. 31.
    ElBatal FH, Marzouk MA, Abdelghany AM (2011) J Non-Cryst Solids 357:1027CrossRefGoogle Scholar
  32. 32.
    Abdelghany AM, ElBatal HA, Marei LK (2012) Radiat Eff Defects Solids 167:49CrossRefGoogle Scholar
  33. 33.
    Guo H, Yang X, Xia T, Zhanga W, Loub L, Mugnierc J (2004) Appl Surf Sci 230:215CrossRefGoogle Scholar
  34. 34.
    Murillo G, Luyer CL, Garapon C, Dujardin C, Bernstein E, Pedrini C, Mugnier J (2002) Opt Mater 19:161CrossRefGoogle Scholar
  35. 35.
    Charton P, Gengembre L, Armand P (2002) J Sol Stat Chem 168:175CrossRefGoogle Scholar
  36. 36.
    Lavat AE, Baran EJ (2008) J Alloys Compd 460:152CrossRefGoogle Scholar
  37. 37.
    Wood DL, Tauc J (1970) Mater Res Bull 5:721CrossRefGoogle Scholar
  38. 38.
    White WB, Keramidas VG (1972) Spectrochim. Acta A 28:501Google Scholar
  39. 39.
    Kaur G, Kumar M, Arora A, Pandey OP, Singh K (2011) J Non-Cryst Solids 357:858CrossRefGoogle Scholar
  40. 40.
    Pauling L (1960) The nature of chemical bond. Cornell University, Ithaca, 3rd ednGoogle Scholar
  41. 41.
    Koffeyberg FP (1992) J Phys Chem Solids 53:1285CrossRefGoogle Scholar
  42. 42.
    Urbach F (1953) Phys Rev 92:1324CrossRefGoogle Scholar
  43. 43.
    Sebastian S, Khadar MA (2004) Bull Mater Sci 27:2007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Physics & Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations