Ionics

, Volume 19, Issue 7, pp 951–988 | Cite as

Review of 5-V electrodes for Li-ion batteries: status and trends

Review

Abstract

Lithium-ion batteries have dominated the battery industry for the past several years in portable electronic devices due to their high volumetric and gravimetric energy densities. The success of these batteries in small-scale applications translates to large-scale applications, with an important impact in the future of the environment by improving energy efficiency and reduction of pollution. We present the progress that allows several lithium-intercalation compounds to become the active cathode element of a new generation of Li-ion batteries, namely the 5-V cathodes, which are promising to improve the technology of energy storage and electric transportation, and address the replacement of gasoline engine by meeting the increasing demand for green energy power sources. The compounds considered here include spinel LiNi0.5Mn1.5O4 and its related doped-structures, olivine LiCoPO4, inverse spinel LiNiVO4 and fluorophosphate Li2CoPO4F. LiNi0.5Mn1.5O4 thin films, nanoscale prepared materials and surface-modified cathode particles are also considered. Emphasis is placed on the quality control that is needed to guarantee the reliability and the optimum electrochemical performance of these materials as the active cathode element of Li-ion batteries. The route to increase the performance of Li-ion batteries with the other members of the family is also discussed.

Keywords

Cathodes Li-ion batteries Intercalation compounds 

References

  1. 1.
    Goodenough JB (2002) Oxides cathodes. In: Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York, p 135–154Google Scholar
  2. 2.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRefGoogle Scholar
  3. 3.
    Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2012) Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. J Power Sources 219:36–44CrossRefGoogle Scholar
  4. 4.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRefGoogle Scholar
  5. 5.
    Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643CrossRefGoogle Scholar
  6. 6.
    Thackeray MM, David WIF, Bruce PG, Goodenough JB (1982) Lithium insertion into manganese spinels. Mater Res Bull 18:461–472CrossRefGoogle Scholar
  7. 7.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  8. 8.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRefGoogle Scholar
  9. 9.
    Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRefGoogle Scholar
  10. 10.
    Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19:1497–1514CrossRefGoogle Scholar
  11. 11.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954CrossRefGoogle Scholar
  12. 12.
    Zaghib K, Mauger A, Julien CM (2012) Overview of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845CrossRefGoogle Scholar
  13. 13.
    Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42:713–723CrossRefGoogle Scholar
  14. 14.
    Liu GQ, Wen L, Liu YM (2010) Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Solid State Electrochem 14:2191–2202CrossRefGoogle Scholar
  15. 15.
    Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451CrossRefGoogle Scholar
  16. 16.
    Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better … A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939CrossRefGoogle Scholar
  17. 17.
    Liu D, Han J, Dontigny M, Charest P, Guerfi A, Zaghib K, Goodenough JB (2010) Redox behaviors of Ni and Cr with different counter cations in spinel cathodes for Li-ion batteries. J Electrochem Soc 157:A770–A775CrossRefGoogle Scholar
  18. 18.
    Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium rechargeable batteries: status and trends. J Power Sources 232:357–369CrossRefGoogle Scholar
  19. 19.
    Shin Y, Manthiram A (2004) Factors influencing the capacity fade of spinel lithium manganese oxides. J Electrochem Soc 151:A204–A208CrossRefGoogle Scholar
  20. 20.
    Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15:779–784CrossRefGoogle Scholar
  21. 21.
    Thirunakaran R, Kalaiselvi N, Periasamy P, Ramesh-Babu B, Renganathan NG, Mumiyandi N, Razhaven M (2001) Significance of Mg doped LiMn2O4 spinels as attractive 4 V cathode materials for use in lithium batteries. Ionics 7:187–191CrossRefGoogle Scholar
  22. 22.
    Sun YK, Park GS, Lee YS, Yoshio M, Nahm KS (2001) Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling. J Electrochem Soc 148:A994–A998CrossRefGoogle Scholar
  23. 23.
    Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 − yO4 (0 < y < 1). Solid State Ionics 81:167–170CrossRefGoogle Scholar
  24. 24.
    Kawai H, Nagata M, Tabuchi M, Tukamoto H, West AR (1998) Novel 5 V spinel cathode Li2FeMn3O8 for lithium ion batteries. Chem Mater 10:3266–3268CrossRefGoogle Scholar
  25. 25.
    Shigemura H, Sakaebe H, Kageyama H, Kobayashi H, West AR, Kanno R, Morimoto S, Nasu S, Tabuchi M (2001) Structure and electrochemical properties of LiFexMn2 − xO4 (0 ≤ x ≤ 0.5) spinel as 5 V electrode material for lithium batteries. J Electrochem Soc 148:A730–A736CrossRefGoogle Scholar
  26. 26.
    Kawai H, Nagata M, Kageyama H, Tukamoto H, West AR (1999) 5 V lithium cathodes based on spinel solid solutions Li2Co1 + XMn3 − XO8: −1 ≤ X ≤ 1. Electrochim Acta 45:315–327CrossRefGoogle Scholar
  27. 27.
    Ein-Eli Y, Howard WF, Lu SH, Mukerjee S, McBreen J, Vaughey JT, Thackeray MM (1998) LiMn2 − xCuxO4 spinels (0.1 < x < 0.5): a new class of 5 V cathode materials for Li batteries: I. Electrochemical, structural, and spectroscopic studies. J Electrochem Soc 145:1238–1244CrossRefGoogle Scholar
  28. 28.
    Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2007) Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods. J Magn Magn Mater 309:100–105CrossRefGoogle Scholar
  29. 29.
    Zhong QM, Bonakdarpour A, Zhang MJ, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2 − xO4. J Electrochem Soc 144:205–213CrossRefGoogle Scholar
  30. 30.
    Gao Y, Myrtle K, Zhang MJ, Reimers JN, Dahn JR (1996) Valence band of LiNixMn2 − xO4 and its effects on the voltage profiles of LiNixMn2 − xO4/Li electrochemical cells. Phys Rev B: Condens Matter 54:16670–16675CrossRefGoogle Scholar
  31. 31.
    Shin Y, Manthiram A (2003) Origin of the high voltage (>4.5 V) capacity of spinel lithium manganese oxides. Electrochim Acta 48:3583–3592CrossRefGoogle Scholar
  32. 32.
    Obrovac MN, Gao Y, Dahn JR (1998) Explanation for the 4.8-V plateau in LiCrxMn2 − xO4. Phys Rev B: Condens Matter 57:5728–5733CrossRefGoogle Scholar
  33. 33.
    Gryffroy D, Vaudenberghe RE (1992) Cation distribution, cluster structure and ionic ordering of the spinel series LiNi0.5Mn1.5 − xTixO4 and LiNi0.5 − yMgyMn1.5O4. J Phys Chem Solids 53:777–784CrossRefGoogle Scholar
  34. 34.
    Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4 − δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd-3m and P4332. Chem Mater 16:906–914CrossRefGoogle Scholar
  35. 35.
    Park SH, Sun YK (2004) Synthesis and electrochemical properties of 5 V spinel LiNi0.5Mn1.5O4 cathode materials prepared by ultrasonic spray pyrolysis method. Electrochim Acta 50:439–434CrossRefGoogle Scholar
  36. 36.
    Strobel P, Ibarra-Palos A, Anne M, Poinsignon C, Crisci A (2003) Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sci 5:1009–1018CrossRefGoogle Scholar
  37. 37.
    Ariyoshi K, Iwakoshi Y, Nakayama N, Ohzuku T (2004) Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells. J Electrochem Soc 151:A296–A303CrossRefGoogle Scholar
  38. 38.
    Kanamura K, Hoshikawa W, Umegaki T (2002) Electrochemical characteristics of LiNi0.5Mn1.5O4 cathodes with Ti or Al current collectors. J Electrochem Soc 149:A339–A345CrossRefGoogle Scholar
  39. 39.
    Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 81–82:90–94CrossRefGoogle Scholar
  40. 40.
    Okada M, Lee YS, Yoshio M (2000) Cycle characterizations of LiMxMn2 − xO4 (M = Co, Ni) materials for lithium secondary battery at wide voltage region. J Power Sources 90:196–200CrossRefGoogle Scholar
  41. 41.
    Dokko K, Mohamedi M, Anzue N, Itoh T, Uchida I (2002) In situ Raman spectroscopic studies of LiNixMn2 − xO4 thin film cathode materials for lithium ion secondary batteries. J Mater Chem 12:3688–3693CrossRefGoogle Scholar
  42. 42.
    Takahashi K, Saitoh M, Sano M, Fujita M, Kifune K (2004) Electrochemical and structural properties of a 4.7 V-class LiNi0.5Mn1.5O4 positive electrode material prepared with a self-reaction method. J Electrochem Soc 151:A173–A177CrossRefGoogle Scholar
  43. 43.
    Ooms FGB, Kelder EM, Schoonman J, Wagemaker M, Mulder FM (2002) High-voltage LiMgδNi0.5 − δMn1.5O4 spinels for Li-ion batteries. Solid State Ionics 152–153:143–153CrossRefGoogle Scholar
  44. 44.
    Blasse G (1966) Ferromagnetism and ferrimagnetism of oxygen spinels containing tetravalent manganese. J Phys Chem Solids 27:383–389CrossRefGoogle Scholar
  45. 45.
    Nakamura T, Yamada Y, Tabuchi M (2005) Magnetic and electrochemical studies on Ni2+-substituted Li–Mn spinel oxides. J Appl Phys 98, 093905-1-5Google Scholar
  46. 46.
    Xin XG, Shen JQ, Shi SQ (2012) Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4 − δ spinels: a first-principles study. Chin Phys B 21:128202CrossRefGoogle Scholar
  47. 47.
    Mukai K, Sugiyama J (2010) An indicator to identify the Li[Ni1/2Mn3/2]O4 (P4332): dc-susceptibility measurements. J Electrochem Soc 157:A672–A676CrossRefGoogle Scholar
  48. 48.
    Idemoto Y, Narai H, Koura N (2003) Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J Power Sources 119–121:125–129CrossRefGoogle Scholar
  49. 49.
    Park SH, Oh SW, Myung ST, Sun YK (2004) Mo6+-doped Li[Ni(0.5 + x)Mn(1.5 − 2x)Mox]O4 spinel materials for 5 V lithium secondary batteries prepared by ultrasonic spray pyrolysis. Electrochem Solid-State Lett 7:A451–A454CrossRefGoogle Scholar
  50. 50.
    Moorhead-Rosenberg Z, Shin DW, Chemelewski KR, Goodenough JB, Manthiram A (2012) Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Appl Phys Lett 100, 213909-1-5Google Scholar
  51. 51.
    Idemoto Y, Narai H, Koura N (2002) Oxygen content and electrode characteristics of LiMn1.5Ni0.5O4 as a 5 V class cathode material for lithium secondary battery. Electrochemistry 70:587–589Google Scholar
  52. 52.
    Rhodes K, Meisner R, Kim Y, Dudney N, Daniel C (2011) Evolution of phase transformation behavior in Li(Mn1.5Ni0.5)O4 cathodes studied by in situ XRD. J Electrochem Soc 158:A890–A897CrossRefGoogle Scholar
  53. 53.
    Oikawa K, Kamiyama T, Izumi F, Nakazato D, Ikuta H, Wakihara M (1999) Neutron and X-ray powder diffraction studies of LiMn2 − yCryO4. J Solid State Chem 146:322–328CrossRefGoogle Scholar
  54. 54.
    Bhaskar A, Bramnik NN, Senyshyn A, Fuess H, Ehrenberg H (2010) Synthesis, characterization, and comparison of electrochemical properties of LiM0.5Mn1.5O4 (M = Fe, Co, Ni) at different temperatures. J Electrochem Soc 157:A689–A695CrossRefGoogle Scholar
  55. 55.
    Shin DW, Bridges CA, Huq AM, Paranthaman MP, Manthiram A (2012) Role of cation ordering and surface segregation in high-voltage spinel LiMn1.5Ni0.5 − xMxO4 (M = Cr, Fe, and Ga) cathodes for lithium-ion batteries. Chem Mater 24:3720–3731CrossRefGoogle Scholar
  56. 56.
    Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) In situ XAFS analysis of Li(Mn, M)2O4 (M = Cr, Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J Solid State Chem 156:286–291CrossRefGoogle Scholar
  57. 57.
    Wen W, Kumarasamy B, Mukerjee S, Auinat M, Ein-Eli Y (2005) Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM0.5 − xMn1.5 + xO4 (0 ≤ x ≤ 0.5) cathode materials in situ XRD and XANES spectroscopy studies. J Electrochem Soc 152:A1902–A1911CrossRefGoogle Scholar
  58. 58.
    Mukerjee S, Yang XQ, Sunb X, Lee SJ, McBreen J, Ein-Eli Y (2004) In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries. Electrochim Acta 49:3373–3382CrossRefGoogle Scholar
  59. 59.
    Yang J, Zhang X, Zhu Z, Cheng F, Chen J et al (2013) Ordered spinel LiNi0.5Mn1.5O4 nanorods for high-rate lithium-ion batteries. J Electroanal Chem. doi:10.1016/j.jelechem.2012.09.042 Google Scholar
  60. 60.
    Amdouni NK, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12:117–126CrossRefGoogle Scholar
  61. 61.
    Liu D, Lu Y, Goodenough JB (2010) Rate properties and elevated-temperature performances of LiNi0.5 − xCr2xMn1.5 − xO4 (0 ≤ 2x ≤ 0.8) as 5 V cathode materials for lithium-ion batteries. J Electrochem Soc 157:A1269–A1273CrossRefGoogle Scholar
  62. 62.
    Wang L, Li H, Huang X, Baudrin E (2011) A comparative study of Fd-3m and P4332 LiNi0.5Mn1.5O4. Solid State Ionics 193:32–38CrossRefGoogle Scholar
  63. 63.
    Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113:15073–15079CrossRefGoogle Scholar
  64. 64.
    Julien CM, Gendron F, Amdouni N, Massot M (2006) Lattice vibrations of materials for lithium rechargeable batteries. VI: ordered spinels. Mater Sci Eng B 130:41–48CrossRefGoogle Scholar
  65. 65.
    Matsui M, Dokko K, Kanamura K (2010) Surface layer formation and stripping process on LiMn2O4 and LiNi1/2Mn3/2O4 thin film electrodes. J Electrochem Soc 157:A121–A129CrossRefGoogle Scholar
  66. 66.
    Oh SH, Jeon SH, Cho WI, Kim CS, Cho BW (2008) Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process. J Alloys Compd 452:389–396CrossRefGoogle Scholar
  67. 67.
    Patoux Q, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Martinet S (2009) High voltage spinel oxides for Li-ion batteries: from the material research to the application. J Power Sources 189:344–352CrossRefGoogle Scholar
  68. 68.
    Fang HS, Wang ZX, Li XH, Guo HJ, Peng WJ (2006) Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction. J Power Sources 153:174–176CrossRefGoogle Scholar
  69. 69.
    Chen ZY, Ji S, Linkov V, Zhang JL, Zhu W (2009) Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction. J Power Sources 189:507–510CrossRefGoogle Scholar
  70. 70.
    Feng XY, Shen C, Fang X, Chen CH (2012) Nonstoichiometric Li1 ± xNi0.5Mn1.5O4 with different structures and electrochemical properties. Chin Sci Bull 57:4176–4180CrossRefGoogle Scholar
  71. 71.
    Miao C, Shi L, Chen G, Dai D (2012) Preparation of precursor of LiNi0.5Mn1.5O4 with high density. Adv Mater Res 463–464:881–884CrossRefGoogle Scholar
  72. 72.
    Fang HS, Wang ZX, Li XH, Yin ZL, Guo HJ, Peng W-J (2006) Synthesis and characterization of high capacity LiNi0.5Mn1.5O4 using Li2CO3, NiO and electrolytic MnO2. Chin J Inorg Chem 22:311–315Google Scholar
  73. 73.
    Fang HS, Wang ZX, Li XH, Guo HJ, Peng WJ (2006) Low temperature synthesis of LiNi0.5Mn1.5O4 spinel. Mater Lett 60:1273–1275CrossRefGoogle Scholar
  74. 74.
    Liu G, Qi L, Wen L (2006) Synthesis and electrochemical performance of LiNixMn2 − xO4 spinel as cathode material for lithium ion batteries. Rare Met Mater Eng 35:299–302Google Scholar
  75. 75.
    Xiao J, Xu W, Wang D, Graff G, Choi D, Nie Z, Zhang JG (2010) High voltage spinel LiNi0.5Mn1.5O4 as a cathode material for lithium-ion batteries. ESC Meet Abstr 359Google Scholar
  76. 76.
    Fang HS, Wang ZX, Yin ZL, Li XH, Guo HJ, Peng WJ (2005) Effect of ball milling and electrolyte on properties of high-voltage LiNi0.5Mn1.5O4 spinel. Trans Nonferrous Met Soc Chin (English) 15:1429–1432Google Scholar
  77. 77.
    Fang HS, Li LP, Li GS (2007) A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4. J Power Sources 167:223–227CrossRefGoogle Scholar
  78. 78.
    Liu YJ, Liu ZY, Chen XH, Chen L (2012) Synthesis and performance of LiNi0.5Mn1.5O4 cathodes. J Central South Univ (Sci Technol) 43:4248–4252Google Scholar
  79. 79.
    Zhang L, Lv XY, Wen YX, Wang F, Su HF (2009) Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries. J Alloys Compd 480:802–805CrossRefGoogle Scholar
  80. 80.
    Zhu Z, Yan H, Zhang D, Li W, Lu Q (2013) Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery. J Power Sources 224:13–19CrossRefGoogle Scholar
  81. 81.
    Park JS, Roh KC, Lee JW, Song K, Kim YI, Kang YM (2013) Structurally stabilized LiNi0.5Mn1.5O4 with enhanced electrochemical properties through nitric acid treatment. J Power Sources 230:138–142CrossRefGoogle Scholar
  82. 82.
    Ohzuku T, Ariyoshi K, Yamamoto S (2002) Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. J Ceram Soc Jpn 110:501–505CrossRefGoogle Scholar
  83. 83.
    Ohzuku T, Arioshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 30:1270–1271CrossRefGoogle Scholar
  84. 84.
    Arendt RH (1973) The molten salt synthesis of single magnetic domain BaFe12O19 and SrFe12O19 crystals. J Solid State Chem 8:339–347CrossRefGoogle Scholar
  85. 85.
    Kim JH, Myung ST, Sun YK (2004) Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta 49:219–227CrossRefGoogle Scholar
  86. 86.
    Wen L, Lu Q, Xu GX (2006) Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials. Electrochim Acta 51:4388–4392CrossRefGoogle Scholar
  87. 87.
    Chen G, Hai B, Shukla AK, Duncan H (2012) Impact of LiMn1.5Ni0.5O4 crystal surface facets. ECS Symp Abstr 700Google Scholar
  88. 88.
    Arrebola JC, Caballero A, Hernan L, Morales J (2005) Expanding the rate capabilities of the LiNi0.5Mn1.5O4 spinel by exploiting the synergistic effect between nano and microparticles. Electrochem Solid-State Lett 8:A641–A645CrossRefGoogle Scholar
  89. 89.
    Yan QX, Wang ZX, Wu J, Li XH, Tan QY (2009) Synthesis and property of the high-voltage cathode material LiNi0.5Mn1.5O4. J Funct Mater 40:933–935Google Scholar
  90. 90.
    Raja MW, Mahanty S, Basu RN (2009) Multi-faceted highly crystalline LiMn2O4 and LiNi0.5Mn1.5O4 cathodes synthesized by a novel carbon exo-templating method. Solid State Ionics 180:1261–1266CrossRefGoogle Scholar
  91. 91.
    Shao-Horn Y, Middaugh RL (2001) Redox reactions of cobalt, aluminum and titanium substituted lithium manganese spinel compounds in lithium cells. Solid State Ionics 139:13–25CrossRefGoogle Scholar
  92. 92.
    Fang H, Wang Z, Zhang B, Li X, Li G (2007) High performance LiNi0.5Mn1.5O4 cathode materials synthesized by a combinational annealing method. Electrochem Commun 9:1077–1082CrossRefGoogle Scholar
  93. 93.
    Lim SJ, Ryu WH, Kim WK, Kwon HS (2012) Electrochemical performance of LiNi0.5Mn1.5O4 cathode material fabricated from nanothorn sphere structured MnO2. ECS Symp Abstr 953Google Scholar
  94. 94.
    Fan WF, Qu MZ, Peng GC, Yu ZL (2009) Electrochemical properties of LiNi0.5Mn1.5O4 as 5-V cathode materials synthesized through self-combustion reaction (SCR). Chin J Inorg Chem 25:124–128Google Scholar
  95. 95.
    Zhao ZQ, Ma JF, Tian H, Xie LJ, Zhou J, Wu PW, Wang YG, Tao JT, Zhu XY (2005) Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 cathode material by the soft combustion reaction method. J Am Ceram Soc 88:3549–3552CrossRefGoogle Scholar
  96. 96.
    He ZQ, Xiong LZ, Wu XM, Liu WP, Chen S, Huang KL (2007) Preparation and electrochemical characterization of LiNi0.5Mn1.5O4 positive electrode for lithium ion batteries by rheological method. Chin J Inorg Chem 23:875–878Google Scholar
  97. 97.
    Fan YK, Wang JM, Ye XB, Zhang JQ (2007) Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a co-precipitation method. Mater Chem Phys 103:19–23CrossRefGoogle Scholar
  98. 98.
    Liu GQ, Wang YJ, Lu Q (2005) Synthesis and electrochemical performance of LiNi0.5Mn1.5O4 spinel compound. Electrochim Acta 50:1965–1968CrossRefGoogle Scholar
  99. 99.
    Yi TF, Zhu YR (2008) Synthesis and electrochemistry of 5 V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods. Electrochim Acta 53:3120–3126CrossRefGoogle Scholar
  100. 100.
    Yi TF, Hu XG (2007) Preparation and characterization of sub-micro LiNi0.5 − xMn1.5 + xO4 for 5 V cathode materials synthesized by an ultrasonic-assisted co-precipitation method. J Power Sources 167:185–191CrossRefGoogle Scholar
  101. 101.
    Myung ST, Komaba S, Kumagai N, Yashiro H, Chung HT, Cho TH (2002) Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochim Acta 47:2543–2549CrossRefGoogle Scholar
  102. 102.
    Zhao Q, Ye N, Li L, Yan F (2010) Oxalate coprecipitation process synthesis of 5 V cathode material LiNi0.5Mn1.5O4 and its performance. Rare Met Mater Eng 39:1715–1718CrossRefGoogle Scholar
  103. 103.
    Liu D, Han J, Goodenough JB (2010) Structure, morphology, and cathode performance of Li1 − x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid. J Power Sources 195:2918–2923CrossRefGoogle Scholar
  104. 104.
    Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2005) Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 50:881–928CrossRefGoogle Scholar
  105. 105.
    Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) Cathode materials for lithium ion batteries prepared by sol–gel methods. J Solid State Electrochem 8:450–466CrossRefGoogle Scholar
  106. 106.
    Choy JH, Kim DH, Kwon CW, Hwang SJ, Kim YI (1999) Physical and electrochemical characterization of nanocrystalline LiMn2O4 prepared by a modified citrate route. J Power Sources 77:1–11CrossRefGoogle Scholar
  107. 107.
    Lee YS, Sun YK, Nahm (1998) Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol–gel method for lithium secondary batteries. Solid State Ionics 109:285–294CrossRefGoogle Scholar
  108. 108.
    Hwang BJ, Santhanam R, Liu DG (2001) Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol–gel method at low temperature. J Power Sources 101:86–89CrossRefGoogle Scholar
  109. 109.
    Hwang BJ, Santhanam R, Liu DG (2001) Effect of Al-substitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol–gel method. J Power Sources 102:326–331CrossRefGoogle Scholar
  110. 110.
    Arrebola JC, Caballero A, Hernan L, Morales J (2008) PMMA-assisted synthesis of Li1 − xNi0.5Mn1.5O4 − δ for high-voltage lithium batteries with expanded rate capability at high cycling temperatures. J Power Sources 180:852–858CrossRefGoogle Scholar
  111. 111.
    Yi TF, Li CY, Zhu YR, Shu J, Zhu RS (2009) Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. J Solid State Electrochem 13:913–919CrossRefGoogle Scholar
  112. 112.
    Zhao G, Yang Y, Lin Y, Zeng B, Zhou T, Lin Y, Huang Z (2012) Influence of Al substitution on the electrochemical performance of spinel LiNi0.5 − xMn1.5AlxO4 cathode. Asia-Pacific Power and Energy Eng Conf APPEEC art no 6306969Google Scholar
  113. 113.
    Cui YL, Bao WJ, Yuan Z, Zhuang QC, Sun Z (2012) Electrochemical performance Ni doped spinel LiMn2O4 cathode for lithium ion batteries. Adv Mater Res 347–353:290–300Google Scholar
  114. 114.
    Yang K, Su J, Zhang L, Long Y, Lv X, Wen Y (2012) Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries. Particuology 10:765–770CrossRefGoogle Scholar
  115. 115.
    Cao A, Manthiram A (2012) Controlled synthesis of high tap density LiMn1.5Ni0.5O4 with tunable shapes. ECS Symp Abstr 699Google Scholar
  116. 116.
    Idemoto Y, Sekine H, Ui K, Koura N (2003) Dependence of Li content on crystal structure during the charge–discharge process of LiMn1.5Ni0.5O4 as a cathode material for 5 V class lithium secondary battery. Electrochemistry 71:1142–1144Google Scholar
  117. 117.
    Idemoto Y, Sekine H, Ui K, Koura N (2004) Physical property, crystal structure and electrode performance depend on synthetic condition of LiMn1.5Ni0.5O4 as cathode materials for 5 V class lithium secondary battery. Electrochemistry 72:564–568Google Scholar
  118. 118.
    Cabana J, Zheng H, Shukla AK, Kim C, Battaglia VS, Kunduraci M (2011) Comparison of the performance of LiNi1/2Mn3/2O4 with different microstructures. J Electrochem Soc 158:A997–A1004CrossRefGoogle Scholar
  119. 119.
    Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352CrossRefGoogle Scholar
  120. 120.
    Yamada M, Dongying B, Kodera T, Myoujin K, Ogihara T (2009) Mass production of cathode materials for lithium ion battery by flame type spray pyrolysis. J Ceram Soc Jpn 117:1017–1020CrossRefGoogle Scholar
  121. 121.
    Ogihara T, Akao S, Yamada M, Kodera T, Myoujin K (2011) Powder characterization and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials produced by large spray pyrolysis using flame combustion. Adv Mater Sci Eng art no 768143. doi:10.1155/2011/768143
  122. 122.
    Kim JH, Hong YJ, Park BK, Kang YC (2013) Nano-sized LiNi0.5Mn1.5O4 cathode powders with good electrochemical properties prepared by high temperature flame spray pyrolysis. J Ind Eng Chem. doi:10.1016/j.jiec.2012.12.019 Google Scholar
  123. 123.
    Schroeder M, Glatthaar S, Geßwein H, Winkler V, Bruns M, Scherer T, Chakravadhanula VSK, Binder JR (2013) Post-doping via spray-drying: a novel sol–gel process for the batch synthesis of doped LiNi0.5Mn1.5O4 spinel material. J Mater Sci. doi:10.1007/s10853-012-7127-2 Google Scholar
  124. 124.
    Wu HM, Tu JP, Chen XT, Shi DQ, Zhao XB, Cao GS (2006) Synthesis and characterization of abundant Ni-doped LiNixMn2 − xO4 (x = 0.1–0.5) powders by spray-drying method. Electrochim Acta 51:4148–4152CrossRefGoogle Scholar
  125. 125.
    Li JK, Lu M, Liao XZ, Ma ZF (2012) Preparation of LiNi0.5Ni1.5O4 cathode material through spray drying assisted annealing process and its electrochemical performance. ECS Symp Abstr 957Google Scholar
  126. 126.
    Park SH, Oh SW, Myung ST, Kang YC, Sun YK (2005) Effects of synthesis condition on LiNi1/2Mn3/2O4 cathode material prepared by ultrasonic spray pyrolysis method. Solid State Ionics 176:481–486CrossRefGoogle Scholar
  127. 127.
    Park SH, Oh SW, Yoon CS, Myung ST, Sun YK (2005) LiNi0.5Mn1.5O4 showing reversible phase transition on 3 V region. Electrochem Solid-State Lett 8:A163–A167CrossRefGoogle Scholar
  128. 128.
    Ogihara T, Kodera T, Myoujin K, Motohira S (2009) Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process. Mater Sci Eng B 161:109–114CrossRefGoogle Scholar
  129. 129.
    Kojima M, Mukoyama I, Myoujin K, Kodera T, Ogihara T (2009) Mass production and battery properties of LiNi0.5Mn 1.5O4 powders prepared by internal combustion type spray pyrolysis. Key Eng Mater 388:85–88CrossRefGoogle Scholar
  130. 130.
    Shiu JJ, Pang WK, Wu SH (2012) Effects of heat treatment on the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials via spray pyrolysis method. ECS Symp Abstr 860Google Scholar
  131. 131.
    Yu LH, Cao YL, Yang HX, Ai XP (2006) Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. J Solid State Electrochem 10:283–287CrossRefGoogle Scholar
  132. 132.
    Xu HY, Xie S, Ding N, Liu BL, Shang Y, Chen CH (2006) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel method. Electrochem Acta 51:4352–4347CrossRefGoogle Scholar
  133. 133.
    Caballero A, Cruz M, Hernan L, Melero M, Morales J (2005) Oxygen deficiency as the origin of the disparate behavior of LiM0.5Mn1.5O4 (M = Ni, Cu) nanospinels in lithium cells. J Electrochem Soc 152:A552–A559CrossRefGoogle Scholar
  134. 134.
    Zhan X, Li Z, Tang J, Xiao Q, Lei G, Zhou X (2010) Cyclic improvement of LiNi0.5Mn1.5O4 polyhedral spinels for 5.0 V lithium ion batteries. Funct Mater Lett 3:185–188CrossRefGoogle Scholar
  135. 135.
    Lihong Y, Cao Y, Yang H, Ai X (2006) Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. J Solid State Electrochem 10:283–287CrossRefGoogle Scholar
  136. 136.
    Arrebola JC, Caballero A, Cruz M, Hernán L, Morales J, Castellon ER (2006) Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis: a method for improving its rate capability and performance in 5 V lithium batteries. Adv Funct Mater 16:1904–1911CrossRefGoogle Scholar
  137. 137.
    Jin YC, Duh JG (2013) Nanostructured LiNi0.5Mn1.5O4 cathode material synthesized by polymer-assisted co-precipitation method with improved rate capability. Mater Lett 93:77–80CrossRefGoogle Scholar
  138. 138.
    Yi TF, Xie Y, Ye MF, Jiang LJ, Zhu RS, Zhu YR (2011) Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 17:383–389CrossRefGoogle Scholar
  139. 139.
    Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21:1695–1707CrossRefGoogle Scholar
  140. 140.
    Liu Y, Fujiwara T, Yukawa H, Morinaga M (1999) Electronic structures of lithium manganese oxides for rechargeable lithium battery electrodes. Solid State Ionics 126:209–218CrossRefGoogle Scholar
  141. 141.
    Arunkumar TA A, Manthiram A (2005) Influence of chromium doping on the electrochemical performance of the 5 V spinel cathode LiMn1.5Ni0.5O4. Electrochim Acta 50:5568–5572CrossRefGoogle Scholar
  142. 142.
    Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe, Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205:385–393CrossRefGoogle Scholar
  143. 143.
    Hong KJ, Sun YK (2002) Synthesis and electrochemical characteristics of LiCrxNi0.5 − xMn1.5O4 spinel as 5 V cathode materials for lithium secondary batteries. J Power Sources 109:427–430CrossRefGoogle Scholar
  144. 144.
    Liu GQ, Xie HW, Liu LY, Kang XX, Tian YW, Zhai YC (2007) Synthesis and electrochemical performances of spinel LiCr0.1Ni0.4Mn1.5O4 compound. Mater Res Bull 42:1955–1961CrossRefGoogle Scholar
  145. 145.
    Park SB, Eom WS, Cho WI, Jang H (2006) Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping. J Power Sources 159:679–684CrossRefGoogle Scholar
  146. 146.
    Aklalouch M, Amarilla JM, Saadoune I, Rojo JM (2011) LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55 °C: analysis of the effect of the particle size. J Power Sources 196:10222–10227CrossRefGoogle Scholar
  147. 147.
    Aklalouch M, Amarilla JM, Rojas RM, Saadoune I, Rojo JM (2008) Chromium doping as a new approach to improve the cycling performance at high temperature of 5 V LiNi0.5Mn1.5O4-based positive electrode. J Power Sources 185:501–511CrossRefGoogle Scholar
  148. 148.
    Aklalouch M, Rojas RM, Rojo JM, Saadoune I, Amarilla JM (2009) The role of particle size on the electrochemical properties at 25 and at 55 °C of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode materials for lithium-ion batteries. Electrochim Acta 54:7542–7550CrossRefGoogle Scholar
  149. 149.
    Liu D, Hamel-Paquet J, Trottier J, Barray F, Gariépy V, Hovington P, Guerfi A, Mauger A, Julien CM, Goodenough JB, Zaghib K (2012) Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method. J Power Sources 217:400–406CrossRefGoogle Scholar
  150. 150.
    Rajakumar S, Thirunakaran R, Sivashanmugam A, Gopukumar S (2010) Synthesis, characterization, and electrochemical properties of LiCrxNiyMn2 − x − yO4 spinels as cathode material for 5 V lithium battery. J Electrochem Soc 157:A333–A339CrossRefGoogle Scholar
  151. 151.
    Liu GQ, Wen L, Liu GY, Tian YW (2010) Rate capability of spinel LiCr0.1Ni0.4Mn1.5O4. J Alloys Compd 501:233–235CrossRefGoogle Scholar
  152. 152.
    Aklalouch M, Amarilla JM, Rojas RM, Saadoune I, Rojo JM (2010) Sub-micrometric LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode material exhibiting huge rate capability at 25 and 55 °C. Electrochem Commun 12:548–552CrossRefGoogle Scholar
  153. 153.
    Oh SH, Chung KY, Jeon SH, Kim CS, Cho WI, Cho BW (2009) Structural and electrochemical investigations on the LiNi0.5 − xMn1.5 − yMx + yO4 (M = Cr, Al, Zr) compound for 5-V cathode material. J Alloys Compd 469:244–250CrossRefGoogle Scholar
  154. 154.
    Sun Y, Wang Z, Huang X, Chen L (2004) Synthesis and electrochemical performance of spinel LiMn2 − x − yNixCryO4 as 5-V cathode materials for lithium ion batteries. J Power Sources 132:161–165CrossRefGoogle Scholar
  155. 155.
    Kadoma Y, Sato S, Ui K, Kumagai N (2010) Synthesis and electrochemical properties of LiNi0.5 − xMn1.5 − xM2xO4 (M = Al, Cr) cathode materials prepared by PVA method. Electrochemistry 78:658–661CrossRefGoogle Scholar
  156. 156.
    Fey GTK, Lu CZ, Kumar TP (2003) Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5 − yMn1.5O4 (M = Fe, Cu, Al, Mg; y = 0.0–0.4). J Power Sources 115:332–345CrossRefGoogle Scholar
  157. 157.
    Zhong GB, Wang YY, Zhao XJ, Wang QS, Yu Y, Chen CH (2012) Structural, electrochemical and thermal stability investigations on LiNi0.5 − xAl2xMn1.5 − xO4 (0 ≤ 2x ≤ 1.0) as 5 V cathode materials. J Power Sources 216:368–375CrossRefGoogle Scholar
  158. 158.
    Zhong GB, Wang YY, Zhang ZC, Chen CH (2011) Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochim Acta 56:6554–6561CrossRefGoogle Scholar
  159. 159.
    Fey GTK, Lu CZ, Kumar TP (2003) LiAlyNi0.5 − yMn1.5O4 (y = 0.0–0.4) as 5-volt cathodes for lithium batteries. Proc Electrochem Soc 20:475–483Google Scholar
  160. 160.
    Fey GTK, Lu C, Prem-Kumar T (2003) Solid-state synthesis and electrochemical characterization of LiMyCr0.5 − yMn1.5O4 (M = Fe or Al; 0.0 < y < 0.4) spinels. Mater Chem Phys 80:309–318CrossRefGoogle Scholar
  161. 161.
    Arunkumar TA, Manthiram A (2005) Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5 − yNi0.5 − zMy + zO4 (M = Li, Mg, Fe, Co, and Zn). Electrochem Solid-State Lett 8:A403–A405CrossRefGoogle Scholar
  162. 162.
    Locati C, Lafont U, Simonin L, Ooms F, Kelder EM (2007) Mg-doped LiNi0.5Mn1.5O4 spinel for cathode materials. J Power Sources 174:847–851CrossRefGoogle Scholar
  163. 163.
    Wagemaker M, Ooms FGB, Kelder EM, Schoonman J, Kearley GJ, Mulder FM (2004) Extensive migration of Ni and Mn by lithiation of ordered LiMg0.1Ni0.4Mn1.5O4 spinel. J Am Chem Soc 126:13526–13533CrossRefGoogle Scholar
  164. 164.
    Ooms FGB, Wagemaker M, van Well AA, Mulder FM, Kelder EM, Schoonman J (2002) Structure determination of high-voltage LiMgδNi0.5 − δMn1.5O4 spinels for Li-ion batteries. J Appl Phys A 74:S1089–S1091CrossRefGoogle Scholar
  165. 165.
    Alcantara R, Jaraba M, Lavela P, Tirado JL (2004) Changes in the local structure of LiMgyNi0.5 − yMn1.5O4 electrode materials during lithium extraction. Chem Mater 16:1573–1579CrossRefGoogle Scholar
  166. 166.
    Lafont U, Locati C, Borghols WJH, Łasinska A, Dygas J, Chadwick AV, Kelder EM (2009) Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4: Structural, electrochemical and in situ investigation. J Power Sources 189:179–184CrossRefGoogle Scholar
  167. 167.
    Alcantara R, Jaraba M, Lavela P, Tirado JL, Biensan P, de Guibert A, Jordy C, Peres JP (2003) Structural and electrochemical study of new LiNi0.5TixMn1.5 − xO4 spinel oxides for 5-V cathode materials. Chem Mater 15:2376–2382CrossRefGoogle Scholar
  168. 168.
    Kim JH, Myung ST, Yoon CS, Oh IH, Sun YK (2004) Effect of Ti substitution for Mn on the structure of LiNi0.5Mn1.5 − xTixO4 and their electrochemical properties as lithium insertion material. J Electrochem Soc 151:A1911–A1918CrossRefGoogle Scholar
  169. 169.
    Liu GQ, Yuan WS, Liu GY, Tian YW (2009) The electrochemical properties of LiNi0.5Mn1.2Ti0.3O4 compound. J Alloys Compd 484:567–569CrossRefGoogle Scholar
  170. 170.
    Noguchi T, Yamazaki I, Numata T, Shirakata M (2007) Effect of Bi oxide surface treatment on 5-V spinel LiNi0.5Mn1.5 − xTixO4. J Power Sources 174:359–365CrossRefGoogle Scholar
  171. 171.
    Lin M, Wang SH, Gong ZL, Huang XK, Yang Y (2013) A Strategy to improve cyclic performance of LiNi0.5Mn1.5O4 in a wide voltage region by Ti-doping. J Electrochem Soc 160:A3036–A3040CrossRefGoogle Scholar
  172. 172.
    Pérez-Vicente C, Lloris JM, Tirado JL (2004) Understanding the voltage profile of Li insertion into LiNi0.5 − yFeyMn1.5O4 in Li cells. Electrochim Acta 49:1963–1967CrossRefGoogle Scholar
  173. 173.
    Li D, Ito A, Kobayakawa K, Noguchi H, Sato Y (2006) Structural and electrochemical characteristics of LiNi0.5 − xCo2xMn1.5 − xO4 prepared by spray drying process and post-annealing in O2. J Power Sources 161:1241–1246CrossRefGoogle Scholar
  174. 174.
    Alcantara R, Jaraba M, Lavela P, Lloris JM, Perez-Vicente C, Tirado JL (2005) Synergistic effects of double substitution in LiNi0.5 − yFeyMn1.5O4 spinel as 5 V cathode materials. J Electrochem Soc 152:A13–A18CrossRefGoogle Scholar
  175. 175.
    Alcantara R, Jaraba M, Lavela P, Tirado JL (2004) New LiNiyCo1 − 2yMn1 + yO4 spinel oxide solid solutions as 5 V electrode material for Li-ion batteries. J Electrochem Soc 151:A53–A58CrossRefGoogle Scholar
  176. 176.
    Ito A, Li D, Lee Y, Kobayakawa K, Sato Y (2008) Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.5Mn1.5O4. J Power Sources 185:1429–1433CrossRefGoogle Scholar
  177. 177.
    Oh SW, Myung S-T, Kang HB, Sun Y-K (2009) Effects of Co doping on Li[Ni0.5CoxMn1.5 − x]O4 spinel materials for 5-V lithium secondary batteries via Co-precipitation. J Power Sources 189:752–756CrossRefGoogle Scholar
  178. 178.
    Ein-Eli Y, Vaughey JT, Thackeray MM, Mukerjee S, Yang XQ, McBreen J (1999) LiNixCu0.5 − xMn1.5O4 spinel electrodes, superior high-potential cathode materials for Li batteries: I. Electrochemical and structural studies. J Electrochem Soc 146:908–913CrossRefGoogle Scholar
  179. 179.
    Biskup N, Martinez JL, de Dompablo MEAY, Diaz-Carrasco P, Morales J (2006) Relation between the magnetic properties and the crystal and electronic structures of manganese spinels LiNi0.5Mn1.5O4 and LiCu0.5Mn1.5O4 − δ (0 < δ < 0.125). J Appl Phys 100, 093908-1-6Google Scholar
  180. 180.
    Sha O, Qiao Z, Wang S, Tang Z, Wang H, Zhang X, Xu Q (2013) Improvement of cycle stability at elevated temperature and high rate for LiNi0.5 − xCuxMn1.5O4 cathode material after Cu substitution. Mater Res Bull 48:1606–1611CrossRefGoogle Scholar
  181. 181.
    Shin DW, Manthiram A (2011) Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-temperature cyclability for lithium-ion batteries. Electrochem Commun 13:1213–1216CrossRefGoogle Scholar
  182. 182.
    Liu J, Manthiram A (2009) Improved electrochemical performance of the 5 V spinel cathode LiMn1.5Ni0.42Zn0.08O4 by surface modification. J Electrochem Soc 156:A66–A72CrossRefGoogle Scholar
  183. 183.
    Yi TF, Xie Y, Zhu YR, Zhu RS, Ye MF (2012) High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J Power Sources 211:59–65CrossRefGoogle Scholar
  184. 184.
    Wu P, Zeng XL, Zhou C, Gu GF, Tong DG (2013) Improved electrochemical performance of LiNi0.5 − xRhxMn1.5O4 cathode materials for 5 V lithium ion batteries via Rh-doping. Mater Chem Phys 138:716–723CrossRefGoogle Scholar
  185. 185.
    Wang HL, Xia H, Lai MO, Lu L (2009) Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochem Commun 11:1539–1542CrossRefGoogle Scholar
  186. 186.
    Hwang BJ, Wu YW, Venkateswarlu M, Cheng MY, Santhanam R (2009) Influence of synthesis conditions on electrochemical properties of high-voltage Li1.02Ni0.5Mn1.5O4 spinel cathode material. J Power Sources 193:828–833CrossRefGoogle Scholar
  187. 187.
    Rajakumar S, Thirunakaran R, Sivashanmugam A, Yamaki JI, Gopukumar S (2009) Electrochemical behavior of LiM0.25Ni0.25Mn1.5O4 as 5 V cathode materials for lithium rechargeable batteries. J Electrochem Soc 156:A246–A252CrossRefGoogle Scholar
  188. 188.
    Jang MW, Jung HG, Scrosati B, Sun YK (2012) Improved Co-substituted, LiNi0.5 − xCo2xMn1.5 − xO4 lithium ion battery cathode materials. J Power Sources 220:354–359CrossRefGoogle Scholar
  189. 189.
    Kawai H, Nagata M, Tukamoto H, West AR (1998) A novel cathode Li2CoMn3O8 for lithium ion batteries operating over 5 volts. J Mater Chem 8:837–839CrossRefGoogle Scholar
  190. 190.
    Kawai H, Nagata M, Kageyama H, Tukamoto H, West AR (1999) 5 V lithium cathodes based on spinel solid solutions Li2Co1 + XMn3 − XO8: −1 ≤ X ≤ 1. Electrochim Acta 46:315–327CrossRefGoogle Scholar
  191. 191.
    Kalaiselvi N, Kumar MA, Prasath MS, Renganathan NG, Raghavan M, Muniyandi N (2002) Evaluation of fuels for the synthesis of Li2CoMn3O8. Ionics 8:447–452CrossRefGoogle Scholar
  192. 192.
    Bai Y, Knittlmayer C, Gledhill S, Lauermann I, Fischer CH, Weppner W (2009) Preparation and characterization of Li2CoMn3O8 thin film cathodes for high energy lithium batteries. Ionics 15:11–17CrossRefGoogle Scholar
  193. 193.
    Strobel P, Ibarra-Palos A, Anne M, Le Cras F (2000) Structural, magnetic and lithium insertion properties of spinel-type Li2Mn3MO8 oxides (M = Mg, Co, Ni, Cu). J Mater Chem 10:429–436CrossRefGoogle Scholar
  194. 194.
    Kawai H, Nagata M, Tukamoto H, West AR (1999) High-voltage lithium cathode materials. J Power Sources 81–82:67–72CrossRefGoogle Scholar
  195. 195.
    Li Q, Wang Y, Qu D, Xiao L, Bohua Deng B, Cheng JS (2013) A new perspective on the 5 V discharge capacity of Li/Al doped manganese spinels. J Wuhan Univ Technol Mater Sci Ed 28:52–56CrossRefGoogle Scholar
  196. 196.
    Amarilla JM, Rojas RM, Pico F, Pascual L, Petrov K, Kovachevab D (2007) Nanosized LiMyMn2 − yO4 (M = Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method: structural characterization and electrochemical properties. J Power Sources 174:1212–1217CrossRefGoogle Scholar
  197. 197.
    Yoon YK, Park CW, Ahn HY, Kim DH, Lee YS, Kim J (2007) Synthesis and characterization of spinel type high-power cathode materials LiMxMn2 − xO4 (M = Ni, Co, Cr). J Phys Chem Solids 68:780–784CrossRefGoogle Scholar
  198. 198.
    Ammundsen B, Jones DJ, Rozière J, Villain F (1998) Effect of chromium substitution on the local structure and insertion chemistry of spinel lithium manganates: investigation by X-ray absorption fine structure spectroscopy. J Phys Chem B 102:7939–7948CrossRefGoogle Scholar
  199. 199.
    Kulova TL, Karseeva EI, Skundin AM, Kachibaya EI, Imnadze RA, Paikidze TV (2004) Structure and electrochemical behavior of lithium-manganese spinels doped with chromium and nickel. Russian J Electrochem 40:494–499CrossRefGoogle Scholar
  200. 200.
    Idemoto Y, Horiko K, Ito Y, Koura N, Ui K (2004) Li content dependence of crystal structure and electronic structure for chemical delithiation of LixMn2 − yMyO4 (M = Mg, Al, Cr, Mn, Co, Zn, Ni) as a cathode active material for Li secondary battery. Electrochemistry 72:755–762Google Scholar
  201. 201.
    Sigala C, Verbaere A, Mansot JL, Guyomard D, Pifard YM, Tournoux M (1997) The Cr-substituted spinel Mn oxides LiCryMn2 − yO4(0 ≤ y ≤ 1): Rietveld analysis of the structure modifications induced by the electrochemical lithium deintercalation. J Solid State Chem 132:372–381CrossRefGoogle Scholar
  202. 202.
    Zhang DBN, Popov BN, White RE (1998) Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries. J Power Sources 76:81–90CrossRefGoogle Scholar
  203. 203.
    Kobayashi Y, Mita Y, Seki S, Ohno Y, Miyashiro H, Nakayama M, Wakihara M (2008) Configurational entropy of lithium manganese oxide and related materials, LiCryMn2 − yO4 (y = 0, 0.3). J Electrochem Soc 155:A14–A19CrossRefGoogle Scholar
  204. 204.
    Song D, Ikuta H, Uchida T, Wakihara M (1999) The spinel phases LiAlyMn2–yO4 (y = 0, 1/12, 1/9, 1/6, 1/3) and Li(Al, M)1/6Mn11/6O4 (M = Cr, Co) as the cathode for rechargeable lithium batteries. Solid State Ionics 117:151–156CrossRefGoogle Scholar
  205. 205.
    Sigala C, Le Gal La Salle A, Pifard Y, Guyomard D (2001) Influence of the Cr content on the Li deinsertion behavior of the LiCryMn2 − yO4 (0 ≤ y ≤ 1) compounds: I. Separation of bulk and superficial processes at high voltage. J Electrochem Soc 143:A812–A818CrossRefGoogle Scholar
  206. 206.
    Sigala C, Le Gal La Salle A, Pifard Y, Guyomard D (2001) Influence of the Cr content on the Li deinsertion behavior of the LiCryMn2 − yO4 (0 ≤ y ≤ 1) compounds: II. Cyclovoltammetric study of bulk and superficial processes. J Electrochem Soc 143:A819–A825CrossRefGoogle Scholar
  207. 207.
    Sigala C, Le Gal La Salle A, Pifard Y, Guyomard D (2001) Influence of the Cr content on the Li deinsertion behavior of the LiCryMn2 − yO4 (0 ≤ y ≤ 1) compounds: III. Galvanostatic study of bulk and superficial processes. J Electrochem Soc 143:A826–A832CrossRefGoogle Scholar
  208. 208.
    Idemoto Y, Horiko K, Ui K, Koura N (2004) Thermodynamic stability and crystal structure dependence of Li content for LixMn2 − yMyO4(M = Mg, Al, Cr, Mn) as a cathode active material for Li secondary battery. Electrochemistry 72:680–687Google Scholar
  209. 209.
    Mikhailova D, Thomas A, Oswald S, Gruner W, Bramnik NN, Tsirlin AA, Trots DM, Senyshyn A, Eckert J, Ehrenberg H (2013) Structural changes in the LiCrMnO4 cathode material during electrochemical Li extraction and insertion. J Electrochem Soc 160:A3082–A3089CrossRefGoogle Scholar
  210. 210.
    Alcantara R, Jaraba M, Lavela P, Tirado JL, Jumas JC, Olivier Fourcade J (2004) 57Fe Mössbauer spectroscopy and surface modification with zinc and magnesium of LiCo0.8Fe0.2MnO4 5 V electrodes. J Power Sources 135:281–285CrossRefGoogle Scholar
  211. 211.
    Bang HJ, Donepudi VS, Prakash J (2002) Preparation and characterization of partially substituted LiMyMn2 − yO4 (M = Ni, Co, Fe) spinel cathodes for Li-ion batteries. Electrochim Acta 48:443–451CrossRefGoogle Scholar
  212. 212.
    Shigemura H, Tabuchi M, Kobayashi H, Sakaebe H, Hirano A, Kageyama H (2002) Structural and electrochemical properties of Li(Fe, Co)xMn2 − xO4 solid solution as 5 V positive electrode materials for Li secondary batteries. J Mater Chem 12:1882–1891CrossRefGoogle Scholar
  213. 213.
    Amine K, Tukamoto H, Yasuda H, Fujita Y (1997) Preparation and electrochemical investigation of LiMn2 − xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries. J Power Sources 68:604–608CrossRefGoogle Scholar
  214. 214.
    Morales J, Sanchez L, Tirado JL (1998) New doped Li–M–Mn–O (M = Al, Fe, Ni) spinels as cathodes for rechargeable 3 V lithium batteries. J Solid State Electrochem 2:420–426CrossRefGoogle Scholar
  215. 215.
    Ohzuku T, Ariyoshi K, Takeda S, Sakai Y (2001) Synthesis and characterization of 5 V insertion material of Li[FeyMn2 − y]O4 for lithium-ion batteries. Electrochim Acta 46:2327–2336CrossRefGoogle Scholar
  216. 216.
    Eftekhari A (2003) Electrochemical performance and cyclability of LiFe0.5Mn1.5O4 as a 5 V cathode material for lithium batteries. J Power Sources 124:182–190CrossRefGoogle Scholar
  217. 217.
    Leon B, Lloris JM, Perez-Vicente C, Tirado JL (2006) Structure and lithium extraction mechanism in LiNi0.5Mn1.5O4 after double substitution with iron and titanium. Electrochem Solid-State Lett 9:A96–A100CrossRefGoogle Scholar
  218. 218.
    Ein-Eli Y, Howard WF (1997) LiCuxIICuyIIIMn[2 − (x + y)]III, IVO4: 5 V cathode materials. J Electrochem Soc 144:L205–L207CrossRefGoogle Scholar
  219. 219.
    Ein-Eli Y, Lu SH, Rzeznik MA, Mukerjee S, Yang XQ, McBreen J (1998) LiCuxMn2 − xO4 spinels (0.1 < x < 0.5): a new class of cathode materials for Li batteries: II. In situ measurements. J Electrochem Soc 145:3383–3386CrossRefGoogle Scholar
  220. 220.
    Lloris JM, Leon B, Perez-Vicente C, Tirado JL, Womes M, Olivier-Fourcade J, Jumas JC (2004) Composition and electrochemical properties of LiCuxMn2 − xO4 and LiCu0.5 − yAlyMn1.5O4. J Solid State Electrochem 8:521–525CrossRefGoogle Scholar
  221. 221.
    Sulochana A, Thirunakaran R, Sivashanmugam A, Gopukumar S, Yamaki JI (2008) Sol–gel synthesis of 5 V LiCuxMn2 − xO4 as a cathode material for lithium rechargeable batteries. J Electrochem Soc 155:A206–A210CrossRefGoogle Scholar
  222. 222.
    Fang TT, Chung HY (2008) Reassessment of the electronic-conduction behaviour above Verwey-like transition of Ni2+- and Al3+-doped LiMn2O4. J Am Ceram Soc 91:342–345CrossRefGoogle Scholar
  223. 223.
    Ariyoshi K, Iwata E, Kuniyoshi M, Wakabayashi H, Ohzuku T (2006) Lithium aluminum manganese oxide having spinel-framework structure for long-life lithium-ion batteries. Electrochem Solid-State Lett 9:A557–A560CrossRefGoogle Scholar
  224. 224.
    Kim JS, Vaughey JT, Johnson CS, Thackeray MM (2003) Significance of the tetrahedral A site on the electrochemical performance of substituted Li1.05M0.05Mn1.90O4 spinel electrodes (M = Li, Mg, Zn, Al) in lithium cells. J Electrochem Soc 150:A1498–A1502CrossRefGoogle Scholar
  225. 225.
    Lee YJ, Park SH, Eng C, Parise JB, Grey CP (2005) Cation ordering and electrochemical properties of the cathode materials LiZnxMn2 − xO4, 0 < x ≤ 0.5: a 6Li magic-angle spinning NMR spectroscopy and diffraction study. Chem Mater 14:194–205CrossRefGoogle Scholar
  226. 226.
    Ein-Eli Y, Wen W, Mukerjee S (2005) Unexpected 5 V behavior of Zn-doped Mn spinel cathode material. Electrochem Solid-State Lett 8:A141–A144CrossRefGoogle Scholar
  227. 227.
    Amatucci GG, Pereira N, Zheng T, Tarascon JM (2001) Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2 − xO4 − zFz solid solution. J Electrochem Soc 148:A171–A182CrossRefGoogle Scholar
  228. 228.
    Oh SW, Park SH, Kim JH, Bae YC, Sun YK (2006) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sources 157:464–470CrossRefGoogle Scholar
  229. 229.
    Xu XX, Yang J, Wang YQ, Wang JL (2007) LiNi0.5Mn1.5O3.975F0.05 as novel 5-V cathode material. J Power Sources 174:1113–1116CrossRefGoogle Scholar
  230. 230.
    Du GD, NuLi Y, Yang J, Wang J (2008) Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery. Mater Res Bull 43:3607–3613CrossRefGoogle Scholar
  231. 231.
    Wu X, Zong X, Yang Q, Jin Z, Wu H (2001) Electrochemical studies of substituted spinel LiAlyMn2 − yO4 − zFz for lithium secondary batteries. J Fluor Chem 107:39–44CrossRefGoogle Scholar
  232. 232.
    Sun YK, Oh SW, Yoon CS, Bang HJ, Prakash J (2006) Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4 − xSx spinel material in 3-V region. J Power Sources 161:19–26CrossRefGoogle Scholar
  233. 233.
    Amine K, Tukamoto H, Yasuda H, Fujita Y (1996) A new three-volt spinel Li1 + xMn1.5Ni0.5O4 for secondary lithium batteries. J Electrochem Soc 143:1607–1613CrossRefGoogle Scholar
  234. 234.
    Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184CrossRefGoogle Scholar
  235. 235.
    Zheng T, Dahn JR (1997) Lattice-gas model to understand voltage profiles of LiNixMn2 − xO4/Li electrochemical cells. Phys Rev B Condens Matter 56:3800–3805CrossRefGoogle Scholar
  236. 236.
    Yi TF, Zhu YR, Zhu RS (2008) Density functional theory study of lithium intercalation for 5 V LiNi0.5Mn1.5O4 cathode materials. Solid State Ionics 179:2132–2136CrossRefGoogle Scholar
  237. 237.
    Xi N, Zhong B, Chen M, Yin K, Li L, Liu H, Guo X (2013) Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermo polymerization technique. Electrochim Acta 97:184–191CrossRefGoogle Scholar
  238. 238.
    Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F, Chen X, Zhang JG (2012) Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys Chem Chem Phys 14:13515–13521CrossRefGoogle Scholar
  239. 239.
    Takahashi Y, Sasaoka H, Kuzuo R, Kijima N, Akimoto J (2006) A low-temperature synthetic route and electrochemical properties of micrometer-sized LiNi0.5Mn1.5O4 single crystals. Electrochem Solid-State Lett 9:A203–A206CrossRefGoogle Scholar
  240. 240.
    Kanamura K, Hoshikawa W, Umegaki T (2001) Preparation and evaluation of new cathode materials for rechargeable lithium battery with 5 V. J Japn Soc of Powder Powder Met 48:283–287CrossRefGoogle Scholar
  241. 241.
    Maeda Y, Ariyoshi K, Kawai T, Sekiya T, Ohzuku T (2009) Effect of deviation from Ni/Mn stoichiometry in Li[Ni1/2Mn3/2]O4 upon rechargeable capacity at 4.7 V in nonaqueous lithium cells. J Ceram Soc Jpn 117:1216–1220CrossRefGoogle Scholar
  242. 242.
    Yoshio M, Konishi T, Todorov YM, Noguchi H (2000) Electrochemical behavior of nonstoichiometric LiMn2 − xNixO4 as a 5-V cathode material. Electrochemistry 68:412–414Google Scholar
  243. 243.
    Xia H, Meng YS, Lu L, Ceder G (2007) Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4−δ thin-film electrodes prepared by pulsed laser deposition. J Electrochem Soc 154:A737–A743CrossRefGoogle Scholar
  244. 244.
    Pasero D, Reeves N, Pralong V, West AR (2008) Oxygen nonstoichiometry and phase transitions in LiMn1.5Ni0.5O4−δ. J Electrochem Soc 155:A282–A291CrossRefGoogle Scholar
  245. 245.
    Caballero A, Hernán L, Melero M, Morales J, Angulo M (2005) Oxygen lattice instability as a capacity fading mechanism for 5 V cathode materials. J Electrochem Soc 152:A6–A12CrossRefGoogle Scholar
  246. 246.
    Jin YC, Lin CY, Duh JG (2012) Improving rate capability of high potential LiNi0.5Mn1.5O4 − x cathode materials via increasing oxygen non-stoichiometries. Electrochim Acta 69:45–50CrossRefGoogle Scholar
  247. 247.
    Wu X, Kim SB (2002) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel. J Power Sources 109:53–57CrossRefGoogle Scholar
  248. 248.
    Johnson CS, Li N, Vaughey JT, Hackney SA, Thackeray MM (2005) Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem Commun 7:528–536CrossRefGoogle Scholar
  249. 249.
    Song J, Shin DW, Lu Y, Amos CD, Manthiram A, Goodenough JB (2012) Role of oxygen vacancies on the performance of Li[Ni0.5 − xMn1.5 + x]O4 (x = 0, 0.05 and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24:3101–3109CrossRefGoogle Scholar
  250. 250.
    Wu X, Li X, Whang Z, Guo H, Yue P (2013) Capacity fading reason of LiNi0.5Mn1.5O4 with commercial electrolyte. Ionics 19:379–383CrossRefGoogle Scholar
  251. 251.
    Wu W, Li X, Wang Z, Guo H, Wang J, Xue P (2013) Comprehensive reinvestigation on the initial coulombic efficiency and capacity fading mechanism of LiNi0.5Mn1.5O4 at low rate and elevated temperature. J Solid State Electrochem. doi:10.1007/s10008-012-1963-5 Google Scholar
  252. 252.
    Sun YK, Hong KJ, Prakash J, Amine K (2002) Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures. Electrochem Commun 4:344–348CrossRefGoogle Scholar
  253. 253.
    Sun YK, Yoon CS, Oh IH (2003) Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures. Electrochim Acta 48:503–506CrossRefGoogle Scholar
  254. 254.
    Alcantara R, Jaraba M, Lavela P, Tirado JL (2004) X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. J Electroanal Chem 566:187–192CrossRefGoogle Scholar
  255. 255.
    Schougaard SB, Breger J, Jiang M, Grey CP, Goodenough JB (2006) LiNi0.5 + δMn0.5 − δO2 a high-rate, high-capacity cathode for lithium rechargeable batteries. Adv Mater 18:905–909CrossRefGoogle Scholar
  256. 256.
    Ma X, Kang B, Ceder G (2010) High rate micron-sized ordered LiNi0.5Mn1.5O4. J Electrochem Soc 157:A925–A931CrossRefGoogle Scholar
  257. 257.
    Shaju KM, Bruce PG (2008) Nano-LiNi0.5Mn1.5O4 spinel: a high power electrode for Li-ion batteries. Dalton Trans 40:5471–5475CrossRefGoogle Scholar
  258. 258.
    Aurbach D, Markovsky B, Talyosef Y, Salitra G, Kim HJ, Choi S (2006) Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. J Power Sources 162:780–789CrossRefGoogle Scholar
  259. 259.
    Talyosef Y, Markovsky B, Salitra G, Aurbach D, Kim HJ, Choi S (2007) The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries. J Power Sources 146:664–669CrossRefGoogle Scholar
  260. 260.
    Kovacheva D, Markovsky B, Salitra G, Talyosef Y, Gorova M, Levi E, Riboch M, Kim HJ, Aurbach D (2005) Electrochemical behaviour of electrodes comprising micro- and nano-sized particles of LiNi0.5Mn1.5O4: a comparative study. Electrochim Acta 50:5553–5560CrossRefGoogle Scholar
  261. 261.
    Wu HM, Belharouak I, Deng H, Abouimrane A, Sun YK, Amine K (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. J Electrochem Soc 156:A1047–A1050CrossRefGoogle Scholar
  262. 262.
    Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B (2006) TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv Mater 18:2597–2600CrossRefGoogle Scholar
  263. 263.
    Kim JH, Pieczonka NPW, Li Z, Wu Y, Harris S, Powell BR (2013) Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim Acta 90:556–562CrossRefGoogle Scholar
  264. 264.
    Wu HM, Tu JP, Yuan YF, Li Y, Zhao XB, Cao GS (2005) Electrochemical and ex situ XRD studies of a LiMn1.5Ni0.5O4 high-voltage cathode material. Electrochim Acta 50:4104–4108CrossRefGoogle Scholar
  265. 265.
    Kim JH, Yoon CS, Myung ST, Prakash J, Sun YK (2004) Phase transitions in Li1 − δNi0.5Mn1.5O4 during cycling at 5 V. Electrochem Solid-State Lett 7:A216–A220CrossRefGoogle Scholar
  266. 266.
    Alcántara R, Jaraba M, Lavela P, Tirado JL (2002) Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1 − xNi0.5Mn1.5O4 spinel. Electrochim Acta 47:1829–1835CrossRefGoogle Scholar
  267. 267.
    Hai B, Shukla AK, Duncan H, Chen G (2013) The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. J Mater Chem A 1:759–769CrossRefGoogle Scholar
  268. 268.
    Zhu W, Liu D, Trottier J, Gagnon C, Mauger A, Julien CM, Zaghib K (2013) In-situ XRD study of the phase evolution in un-doped and Cr-doped LixMn1.5Ni0.5O4 (0.1 ≤ x ≤ 0.1) 5-volt cathode materials. J Power Sources (in press)Google Scholar
  269. 269.
    Chi LH, Dinh NN, Brutti S, Scrosati B (2010) Synthesis, characterization and electrochemical properties of 4.8 V LiNi0.5Mn1.5O4 cathode material in lithium-ion batteries. Electrochim Acta 55:5110–5116CrossRefGoogle Scholar
  270. 270.
    Chen ZY, Xiao J, Zhu H, Liu YX (2005) Effect of precursors on structure and performance of 5 V Li–Ni–Mn–O cathode materials. Chin J Inorg Chem 21:1417–1421Google Scholar
  271. 271.
    Nie X, Guo XD, Zhong BH, Liu H, Fang WM (2012) Effect of Mn source on 5 V LiNi0.5Mn1.5O4 positive electrode materials prepared by combustion method. Chin J Inorg Chem 28:2573–2580Google Scholar
  272. 272.
    Li DC, Ito A, Kobayakawa K, Noguchi H, Sato Y (2007) Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing. Electrochim Acta 52:1919–1924CrossRefGoogle Scholar
  273. 273.
    Park SH, Oh SW, Kang SH, Belharouak I, Amine K, Sun YK (2007) Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4 cathodes with wide operation voltage (2.0–5.0 V). Electrochim Acta 52:7226–7230CrossRefGoogle Scholar
  274. 274.
    Ariyoshi K, Maeda Y, Kawai T, Ohzuku T (2011) Effect of primary particle size upon polarization and cycling stability of 5-V lithium insertion material of Li[Ni1/2Mn3/2]O4. J Electrochem Soc 158:A281–A284CrossRefGoogle Scholar
  275. 275.
    Gao J, Li J, Jiang C, Wan C (2010) Controlled preparation and characterization of spherical LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. J Electrochem Soc 157:A899–A902CrossRefGoogle Scholar
  276. 276.
    Zhang N, Yang T, Lang Y, Sun K (2011) A facile method to prepare hybrid LiNi0.5Mn1.5O4/C with enhanced rate performance. J Alloys Compd 509:3783–3786CrossRefGoogle Scholar
  277. 277.
    Ju SH, Kim DW (2013) Effect of calcination temperature on the structure and electrochemical performance of LiNi0.5Mn1.5O4 cathode materials. Bull Korean Chem Soc 34:59–62CrossRefGoogle Scholar
  278. 278.
    Zhang B, Wang ZX, Guo HJ (2007) Effect of annealing treatment on electrochemical property of LiNi0.5Mn1.5O4 spinel. Trans Nonferr Met Soc China 17:287–290CrossRefGoogle Scholar
  279. 279.
    Yang T, Sun K, Lei Z, Zhang N, Lang Y (2010) The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery. J Alloys Compd 502:215–219CrossRefGoogle Scholar
  280. 280.
    Qian Y, Deng Y, Shi Z, Zhou Y, Zhuang Q, Chen G (2013) Sub-micrometer-sized LiMn1.5Ni0.5O4 spheres as high rate cathode materials for long-life lithium ion batteries. Electrochem Commun 27:92–95CrossRefGoogle Scholar
  281. 281.
    Xia H, Lu L (2007) Li diffusion in spinel LiNi0.5Mn1.5O4 thin films prepared by pulsed laser deposition. Physica Scripta T 129:43–48CrossRefGoogle Scholar
  282. 282.
    Markovsky B, Talyossef Y, Salitra G, Aurbach D, Kim HJ, Choi S (2005) Cycling and storage performance at elevated temperature of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries. Electrochem Commun 6(2004):821–826Google Scholar
  283. 283.
    Aurbach D, Levi MD, Levi E, Teller H, Markovsky B, Salitra G, Heider H, Heider L (1998) Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J Electrochem Soc 145:3024–3034CrossRefGoogle Scholar
  284. 284.
    Aurbach D, Markovsky B, Levi MD, Levi E, Schechter A, Moshkovich M, Cohen Y (1999) New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources 81–82:95–111CrossRefGoogle Scholar
  285. 285.
    Liu J, Manthiram A (2009) Kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J Electrochem Soc 156:A833–A838CrossRefGoogle Scholar
  286. 286.
    Liu J, Manthiram A (2009) Publisher's note: kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications [J Electrochem Soc 156:A833 (2009)]. J Electrochem Soc 156:S13–S13CrossRefGoogle Scholar
  287. 287.
    Mun J, Yim T, Park K, Ryu JH, Kim YG, Oh SM (2011) Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature. J Electrochem Soc 158:A453–A457CrossRefGoogle Scholar
  288. 288.
    Yang L, Ravdel B, Luchta BL (2010) Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett 13:A95–A97CrossRefGoogle Scholar
  289. 289.
    Saitoh M, Yoshida S, Yamane H, Sano M, Fujita M, Kifune K, Kubota Y (2003) Capacity fading of the acid-treated lithium manganese oxides in high-temperature storage. J Power Sources 122:162–168CrossRefGoogle Scholar
  290. 290.
    Chong J, Xun S, Song X, Liu G, Battaglia VS (2013) Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries. Nano Energy. doi:10.1016/j.nanoen.2012.09.013 Google Scholar
  291. 291.
    Lee H, Choi S, Choi S, Kim HJ, Choi Y, Yoon S, Cho JJ (2007) SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries. Electrochem Commun 9:801–806CrossRefGoogle Scholar
  292. 292.
    Norberg NS, Syzdek J, Kostecki R (2011) Interfacial reactivity of the LiNi0.5Mn1.5O4 spinel cathode. ESC Meet Abstr 664Google Scholar
  293. 293.
    Duncan H, Abu-Lebdeh Y, Davidson I (2010) Study of the cathode–electrolyte interface of LiMn1.5Ni0.5O4. ESC Meet Abstr 481Google Scholar
  294. 294.
    Hagh NM, Cosandey F, Rangan S, Bartynski R, Amatucci GG (2010) Electrochemical performance of acid-treated nanostructured LiMn1.5Ni0.5O4 − δ spinel at elevated temperature. J Electrochem Soc 157:A305–A319CrossRefGoogle Scholar
  295. 295.
    Bodenes L, Dedryvere R, Martinez H, Fischer F, Tessier C, Pérès JP (2012) Lithium-ion batteries working at 85°C: aging phenomena and electrode/electrolyte interfaces studied by XPS. J Electrochem Soc 159:A1739–A1746CrossRefGoogle Scholar
  296. 296.
    Yamane H, Inoue T, Fujita M, Sano M (2001) A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80 °C, and the suppressing substances of its fading. J Power Sources 99:60–65CrossRefGoogle Scholar
  297. 297.
    Amarilla JM, Petrov K, Pico F, Avdeev G, Rojo JM, Rojas RM (2009) Sucrose aided combustion synthesis of nanosized LiMn1.99 − yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels. Characterization and electrochemical behavior at 25 and at 55 °C in rechargeable lithium cells. J Power Sources 191:591–600CrossRefGoogle Scholar
  298. 298.
    Lu D, Xu M, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160:A3138–A3143CrossRefGoogle Scholar
  299. 299.
    Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8:113–128CrossRefGoogle Scholar
  300. 300.
    Sun YK, Lee YS, Yoshio M, Amine K (2002) Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries. Electrochem Solid-State Lett 5:A99–A102CrossRefGoogle Scholar
  301. 301.
    Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T (2003) 5 V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4. J Electrochem Soc 150:A1577–A1582CrossRefGoogle Scholar
  302. 302.
    Arrebola J, Caballero A, Hernan L, Morales J, Castellon ER, Ramos-Barrado JR (2007) Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries. J Electrochem Soc 154:A178–A184CrossRefGoogle Scholar
  303. 303.
    Fan Y, Wang J, Tang Z, He W, Zhang J (2007) Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim Acta 52:3870–3875CrossRefGoogle Scholar
  304. 304.
    Sun YK, Lee YS, Yoshio M, Amine K (2003) Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries. J Electrochem Soc 150:L11CrossRefGoogle Scholar
  305. 305.
    Arrebola J, Caballero A, Hernan L, Morales J, Castellon ER (2005) Adverse effect of Ag treatment on the electrochemical performance of the 5-V nanometric spinel LiNi0.5Mn1.5O4 in lithium cells. Electrochem Solid-State Lett 8:A303–A307CrossRefGoogle Scholar
  306. 306.
    Wu HM, Belharouak I, Abouimrane A, Sun YK, Amine K (2010) Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J Power Sources 195:2909–2913CrossRefGoogle Scholar
  307. 307.
    Hyo-Ree S, Cheol-Woo Y, Keon K (2011) Improved electrochemical properties of LiNi0.5Mn1.5O4 spinel material by surface modification with LiCoO2. ACS National Meeting Book of AbstractGoogle Scholar
  308. 308.
    Cheng F, Xin Y, Huang Y, Chen J, Zhou H, Zhang X (2013) Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J Power Sources. doi:10.1016/j.jpowsour.2013.03.143 Google Scholar
  309. 309.
    Huang YY, Zeng XL, Zhou C, Wu P, Tong DG (2013) Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries. J Mater Sci 48:625–635CrossRefGoogle Scholar
  310. 310.
    Liu D, Bai Y, Zhao S, Zhang W (2012) Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J Power Sources 219:333–338CrossRefGoogle Scholar
  311. 311.
    Shi JY, Yi CW, Kim K (2010) Improved electrochemical performance of AlPO4-coated LiMn1.5Ni0.5O4 electrode for lithium-ion batteries. J Power Sources 195:6860–6866CrossRefGoogle Scholar
  312. 312.
    Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien CM, Zaghib K (2012) Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries. J Power Sources 204:127–132CrossRefGoogle Scholar
  313. 313.
    Liu D, Guerfi A, Hovington P, Trottier J, Dontigny M, Charest P, Mauger A, Julien CM, Zaghib K (2011) Olivine coated spinel: 5 V system for high energy lithium batteries. ECS Meet Abstr 598Google Scholar
  314. 314.
    Kim Y, Chi M, Liang C, Dudney N (2011) Cycling stability of 5 V LiMn1.5Ni0.5O4 spinel particles coated with a thin film mixed conductor. ECS Meet Abstr 639Google Scholar
  315. 315.
    Kim Y, Dudney NJ, Chi M, Martha SK, Nanda J, Veith GM, Liang C (2013) A perspective on coatings to stabilize high-voltage cathodes: LiMn1.5Ni0.5O4 with sub-nanometer Lipon cycled with LiPF6 electrolyte. J Electrochem Soc 160:A3113–A3125CrossRefGoogle Scholar
  316. 316.
    Duncan H, Abu-Lebdeh Y, Davidson IL (2010) Study of the cathode-electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol–gel method for Li-ion batteries. J Electrochem Soc 157:A528–A535CrossRefGoogle Scholar
  317. 317.
    Demeaux J, Caillon-Caravanier M, Galiano H, Lemordant D, Claude-Montigny B (2012) Cathode–electrolyte interface formation electronic contributions of the solvent on the high voltage interfaces: to evidence the chemical and LiNi0.4Mn1.6O4. J Electrochem Soc 159:A1880–A1890CrossRefGoogle Scholar
  318. 318.
    Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791CrossRefGoogle Scholar
  319. 319.
    Cho J, Kim YJ, Kim TJ, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Ang Chem Int Ed 40:3367–3369CrossRefGoogle Scholar
  320. 320.
    Chen Z, Dahn JR (2002) Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid-State Lett 5:A213–A216CrossRefGoogle Scholar
  321. 321.
    Appapillai AT, Mansour AN, Cho J, Shao-Horn Y (2007) Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: combined STEM and XPS studies. Chem Mater 19:5748–5757CrossRefGoogle Scholar
  322. 322.
    Manthiram A, Vadivel-Murugan A, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ Sci 1:621–638CrossRefGoogle Scholar
  323. 323.
    Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159:171–178CrossRefGoogle Scholar
  324. 324.
    Bruce P, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  325. 325.
    Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRefGoogle Scholar
  326. 326.
    Lee YS, Sun YK, Ota S, Miyashita T, Yoshio M (2002) Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process. Electrochem Commun 4:989–994CrossRefGoogle Scholar
  327. 327.
    Lafont U, Locati C, Kelder EM (2006) Nanopowders of spinel-type electrode materials for Li-ion batteries. Solid State Ionics 177:3023–3029CrossRefGoogle Scholar
  328. 328.
    Thirunakaran R, Sivashanmugam A, Gopukumar S, Dunnill CW, Gregory DH (2008) Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCrxMn2 − xO4 (x = 0.00–0.40) via sol–gel synthesis and its electrochemical behaviour for use in Li-ion-batteries. Mater Res Bull 43:2119–2129CrossRefGoogle Scholar
  329. 329.
    Gao XW, Feng CQ, Chou SL, Wang JZ, Sun JZ, Forsyth M, MacFarlane DR, Hua-Kun L (2013) LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte. Electrochim Acta. doi:10.1016/j.electacta.2012.10.156 Google Scholar
  330. 330.
    Kunduraci M, Al-Sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2 − xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592CrossRefGoogle Scholar
  331. 331.
    Kunduraci M, Amatucci GG (2008) The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes. Electrochim Acta 53:4193–4199CrossRefGoogle Scholar
  332. 332.
    Lazarraga MG, Pascual L, Gadjov H, Kovacheva D, Petrov K, Amarilla JM, Rojas RM, Martin-Luengo MA, Rojo JM (2004) Nanosize LiNiyMn2 − yO4 (0 < y ≤ 0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance. J Mater Chem 14:1640–1647CrossRefGoogle Scholar
  333. 333.
    Talyosef Y, Markovsky B, Lavi R, Salitra G, Aurbach D, Kovacheva D, Gorova M, Zhecheva E, Stoyanova R (2007) Comparing the behavior of nano- and microsized particles of LiMn1.5Ni0.5O4 spinel as cathode materials for Li-ion batteries. J Electrochem Soc 154:A682–A691CrossRefGoogle Scholar
  334. 334.
    Xiao L, Zhao Y, Yang Y, Ai X, Yang H, Cao Y (2008) Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis method. J Solid State Electrochem 12:687–691CrossRefGoogle Scholar
  335. 335.
    Arrebola JC, Caballero A, Hernán L, Morales J (2008) Polymer-mediated growth of highly crystalline nano- and micro-sized LiNi0.5Mn1.5O4 spinels. Eur J Inorg Chem 21:3295–3302CrossRefGoogle Scholar
  336. 336.
    Arrebola JC, Caballero A, Hernán L, Morales J (2008) A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4 cathode material. J Power Sources 183:310–315CrossRefGoogle Scholar
  337. 337.
    Arrebola JC, Caballero A, Gomez-Camer JL, Hernan L, Morales J, Sanchez L (2009) Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries. Electrochem Commun 11:1061–1064CrossRefGoogle Scholar
  338. 338.
    Arrebola JC, Caballero A, Hernán L, Morales J (2001) Re-examining the effect of ZnO on nanosized 5V LiNi0.5Mn1.5O4 spinel: an effective procedure for enhancing its rate capability at room and high temperatures. J Power Sources 195:4278–4284CrossRefGoogle Scholar
  339. 339.
    Wang F, Wang X, Zhang L, Wuj L, Yang XQ, Graetz J, Zhu Y (2011) Investigation of the electrochemical behavior of nano LiNi0.5Mn1.5O4 − δ by TEM, EELS and XAS. ECS Meet Abstr 663Google Scholar
  340. 340.
    Lee HW, Muralidharan P, Ruffo R, Kim DK (2011) Synthesis and electrochemical performance of spinel LiNi0.5Mn1.5O4 nanorods as high voltage cathode materials for Li-ion batteries. ECS Meeting Abstract MA-2011-01:536Google Scholar
  341. 341.
    Li M, Sun L, Sun K, Yu S, Wang R, Xie H (2012) Novel synthesis of submicrometric LiNi0.5Mn1.5O4 by electrospinning method. Chem Lett 41:1709–1711CrossRefGoogle Scholar
  342. 342.
    Jo M, Lee YK, Man Kim KM, Cho J (2010) Nanoparticle–nanorod core–shell LiNi0.5Mn1.5O4 spinel cathodes with high energy density for Li-ion batteries. J Electrochem Soc 157:A841–A845CrossRefGoogle Scholar
  343. 343.
    Lee HW, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries. J Power Sources 196:10712–10716CrossRefGoogle Scholar
  344. 344.
    Wang L, Li H, Huang X (2012) Electrochemical properties and interfacial reactions of LiNi0.5Mn1.5O4−δ nanorods. Progr Natur Sci: Mater Intern 22:207–212CrossRefGoogle Scholar
  345. 345.
    Ding YL, Goh BM, Zhang H, Loh KP, Lu L (2013) Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries. J Power Sources 236:1–9CrossRefGoogle Scholar
  346. 346.
    Xia H, Tang SB, Meng YS, Lu L, Ceder G (2007) The influence of preparation conditions on electrochemical properties of LiNi0.5Mn1.5O4 thin film electrodes by PLD. Electrochim Acta 52:2822–2828CrossRefGoogle Scholar
  347. 347.
    Xia H, Lu L, Lai MO (2009) Li diffusion in LiNi0.5Mn0.5O2 thin film electrodes prepared by pulsed laser deposition. Electrochim Acta 54:5986–5991CrossRefGoogle Scholar
  348. 348.
    Wang L, Li H, Courty M, Huang X, Baudrin E (2013) Preparation and characterization of LiNi0.5Mn1.5O4 − δ thin films taking advantage of correlations with powder samples behaviour. J Power Sources 232:165–172CrossRefGoogle Scholar
  349. 349.
    Dokko K, Anzue N, Makino Y, Mohamedi M, Itoh T, Umeda M, Uchida I (2003) Fabrication of thin film electrodes of LiMxMn2 − xO4 (M = Ni, Co) for 5 volt lithium batteries. Electrochemistry 71:1061–1063Google Scholar
  350. 350.
    Dokko K, Anzue N, Mohamedi M, Itoh T, Uchida I (2004) Raman spectro-electrochemistry of LiCoxMn2 − xO4 thin film electrodes for 5 V lithium batteries. Electrochem Commun 6:384–388CrossRefGoogle Scholar
  351. 351.
    Mohamedi M, Makino M, Dokko K, Itoh T, Uchida I (2002) Electrochemical investigation of LiNi0.5Mn1.5O4 thin film intercalation electrodes. Electrochim Acta 48:79–84CrossRefGoogle Scholar
  352. 352.
    Lafont U, Anasrasopol A, Garcia-Tamayo E, Kelder E (2012) Electrostatic spray pyrolysis of LiNi0.5Mn1.5O4 films for 3D Li-ion microbatteries. Thin Solid Films 520:3464–3471CrossRefGoogle Scholar
  353. 353.
    Caballero A, Hernan L, Melero M, Morales J, Moreno R, Ferrari B (2006) LiNi0.5Mn1.5O4 thick-film electrodes prepared by electrophoretic deposition for use in high voltage lithium-ion batteries. J Power Sources 158:583–590CrossRefGoogle Scholar
  354. 354.
    Arrebola JC, Caballero A, Hernan L, Melero M, Morales J, Castellon ER (2006) Electrochemical properties of LiNi0.5Mn1.5O4 films prepared by spin-coating deposition. J Power Sources 162:606–613CrossRefGoogle Scholar
  355. 355.
    Lu W, Jansen A, Dees D, Nelson P, Veselka N, Henriksen R (2011) High-energy electrode investigation for plug-in hybrid electric vehicles. J Power Sources 196:1537–1540CrossRefGoogle Scholar
  356. 356.
    Kanamura K, Hoshikawa W (2006) Electrochemical reaction of 5 V cathode LiNi0.4Mn1.6O4. Solid State Ionics 177:113–119CrossRefGoogle Scholar
  357. 357.
    Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Le Cras F, Martinet S (2008) High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochim Acta 53:4137–4145CrossRefGoogle Scholar
  358. 358.
    Eftekhari A (2004) Fabrication of 5 V lithium rechargeable micro-battery. J Power Sources 132:240–243CrossRefGoogle Scholar
  359. 359.
    Zhou F, Zhao X, van Bommel A, Xia X, Dahn JR (2011) Comparison of Li[Li1∕9Ni1∕3Mn5∕9]O2, Li[Li1∕5Ni1∕5Mn3∕5]O2, LiNi0.5Mn1.5O4, and LiNi2∕3Mn1∕3O2 as high voltage positive electrode materials. J Electrochem Soc 158:A187–A191CrossRefGoogle Scholar
  360. 360.
    Xiang HF, Jin QY, Wang R, Chen CH, Ge XW (2008) Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12. J Power Sources 179:351–356CrossRefGoogle Scholar
  361. 361.
    Xiang HF, Zhang X, Jin QY, Zhang CP, Chen CH, Ge XW (2008) Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J Power Sources 183:355–360CrossRefGoogle Scholar
  362. 362.
    Ariyoshi K, Yamato R, Makimura Y, Amazutsumi T, Maeda Y, Ohzuku T (2008) Three-volt lithium-ion battery consisting of Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: improvement of positive-electrode material for long-life medium-power applications. Electrochem (Jpn) 76:46–54CrossRefGoogle Scholar
  363. 363.
    Ariyoshi K, Yamamoto S, Ohzuku T (2003) Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4. J Power Sources 119–121:959–963CrossRefGoogle Scholar
  364. 364.
    Amazutsumi T, Ariyoshi K, Okumura K, Ohzuku T (2007) Three-volt lithium-ion battery of Li[Li1/3Ti5/3]O4 and Li[Ni1/2Mn3/2]O4 with auxiliary lithium electrode to monitor polarization voltages of positive and negative electrodes. Electrochem (Jpn) 75:867–872CrossRefGoogle Scholar
  365. 365.
    Amazutsumi T, Ariyoshi K, Ohzuku T (2008) Three-volt lithium-ion battery consisting of Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4. In: Proceedings of the 14th International Meeting on Lithium Batteries, TianjinGoogle Scholar
  366. 366.
    Dedryvere R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D (2010) Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery. J Phys Chem C 114:10999–11008CrossRefGoogle Scholar
  367. 367.
    Elia GA, Panero S, Savoini A, Scrosati B, Hassoun J (2013) Mechanically milled, nanostructured SnC composite anode for lithium ion battery. Electrochim Acta 90:690–694CrossRefGoogle Scholar
  368. 368.
    Xia YY, Sakai T, Fujieda T, Wada M, Yoshinaga H (2001) A 4 V lithium-ion battery based on a 5 V LiNixMn2 − xO4 cathode and a flake Cu–Sn microcomposite anode. Electrochem Solid-State Lett 4:A9–A11CrossRefGoogle Scholar
  369. 369.
    Miyashiro H, Seki S, Kobayashi Y, Ohno Y, Mita Y, Usami A (2005) All-solid-state lithium polymer secondary battery with LiNi0.5Mn1.5O4 by mixing of Li3PO4. Electrochem Commun 7:1083–1086CrossRefGoogle Scholar
  370. 370.
    Sun YK, Kim DW, Choi YM (1999) Synthesis and characterization of spinel LiMn2 − xNixO4 for lithium/polymer battery applications. J Power Sources 79:231–237CrossRefGoogle Scholar
  371. 371.
    Fey GTK, Li W, Dahn JR (1994) LiNiVO4: a 4.8 volt electrode material for lithium cells. J Electrochem Soc 141:2279–2282CrossRefGoogle Scholar
  372. 372.
    Fey GTK, Dahn JR, Zhang M, Li W (1997) The effects of the stoichiometry and synthesis temperature on the preparation of the inverse spinel LiNiVO4 and its performance as a new high voltage cathode material. J Power Sources 68:549–552CrossRefGoogle Scholar
  373. 373.
    Prabaharan SRS, Michael MS, Radhakrishna S, Julien C (1997) Novel low-temperature synthesis and characterization of LiNiVO4 for high-voltage Li-ion batteries. J Mater Chem 7:1791–1796CrossRefGoogle Scholar
  374. 374.
    Fey GTK, Perng WB (1997) A new preparation method for a novel high voltage cathode material: LiNiVO4. Mater Chem Phys 47(1997):279–282CrossRefGoogle Scholar
  375. 375.
    Lu CH, Liou SJ (1999) Fabrication and microstructure of lithium nickel vanadium oxide prepared by solid-state reaction. Ceram Intern 25:431–436CrossRefGoogle Scholar
  376. 376.
    Rissouli K, Benkhouja K, Touaiher M, Ait-Salah A, Jaafari K, Fahad M, Julien C (2005) Structure and conductivity of lithiated vanadates LiMVO4 (M = Mn, Co, Ni). J Phys IV France 123:265–269CrossRefGoogle Scholar
  377. 377.
    Rissouli K, Benkhouja K, Ait-Salah A, Julien CM (2004) Structure, conductivity and electrochemistry of lithiated vanadates LiMVO4 (M = Mn, Co, Ni). Proc Electrochem Soc PV 2003–28:315–320Google Scholar
  378. 378.
    Lai QY, Lu JZ, Liang XL, Yan FY, Ji XY (2001) Synthesis and electrochemical characteristics of Li-Ni vanadates as positive materials. Intern J Inorg Mater 3:381–385CrossRefGoogle Scholar
  379. 379.
    Fey GTK, Huang DL (1999) Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries. Electrochim Acta 45:295–314CrossRefGoogle Scholar
  380. 380.
    Lu CH, Liou SJ (1998) Preparation of submicrometre LiNiVO4 powder by solution route for lithium ion secondary batteries. J Mater Sci Lett 17:733–735CrossRefGoogle Scholar
  381. 381.
    Cao X, Xie L, Zhan H, Zhou Y (2008) Rheological phase synthesis and characterization of LiNiVO4 as a high voltage cathode material for lithium ion batteries. J New Mater Electrochem Syst 11:193–198Google Scholar
  382. 382.
    Vivekanandhan S, Venkateswarlu M, Satyanarayana N (2004) Glycerol-assisted gel combustion synthesis of nano-crystalline LiNiVO4 powders for secondary lithium batteries. Mater Lett 58:1218–1222CrossRefGoogle Scholar
  383. 383.
    Chitra S, Kalyani P, Yebka B, Mohan T, Haro-Poniatowski E, Gangadharan R, Julien C (2000) Synthesis, characterization and electrochemical studies of LiNiVO4 cathode material in rechargeable lithium batteries. Mater Chem Phys 65:32–37CrossRefGoogle Scholar
  384. 384.
    Subramania A, Angayarkanni N, Karthick SN, Vasudevan T (2006) Combustion synthesis of inverse spinel LiNiVO4 nano-particles using gelatine as the new fuel. Mater Lett 60:3023–3026CrossRefGoogle Scholar
  385. 385.
    Li X, Wei YJ, Ehrenberg H, Liu DL, Zhan SY, Wang CZ, Chen G (2009) X-ray diffraction and Raman scattering studies of Li+/e-extracted inverse spinel LiNiVO4. J Alloys Compd 471:L26–L28CrossRefGoogle Scholar
  386. 386.
    Prakash D, Masuda Y, Sanjeeviraja C (2013) Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics 19:17–23CrossRefGoogle Scholar
  387. 387.
    Fey GTK, Muralidharan P, Lu CZ, Cho YD (2006) Electrochemical characterization of high performance Al2O3 (MEA) coated LiNiVO4 cathode materials for secondary lithium batteries. Solid State Ionics 177:877–883CrossRefGoogle Scholar
  388. 388.
    Kalyani P, Kalaiselvi N, Muniyandi N (2003) An innovative soft-chemistry approach to synthesize LiNiVO4. Mater Chem Phys 77:662–668CrossRefGoogle Scholar
  389. 389.
    Kalyani P, Kalaiselvi N, Renganathan NG (2005) LiNiMxV1 − xO4 (M = Co, Mg and Al) solid solutions—prospective cathode materials for rechargeable lithium batteries. Mater Chem Phys 90:196–202CrossRefGoogle Scholar
  390. 390.
    Kalyani P (2009) On the electrochemical investigations of substituted LiNiVO4 for lithium battery cathodes. Intern J Electrochem Sci 4:30–42Google Scholar
  391. 391.
    Palanichamy K (2011) On the modified inverse spinel-LiCo(PO4)x(VO4)1 − x as cathode for rechargeable lithium batteries. Ionics 17:391–397CrossRefGoogle Scholar
  392. 392.
    Fey GTK, Chen KS (1999) Synthesis, characterization, and cell performance of LiNiVO4 cathode materials prepared by a new solution precipitation method. J Power Sources 81–82:467–471CrossRefGoogle Scholar
  393. 393.
    Chitra S, Kalyani P, Mohan T, Gopalakrishnan K, Gangadharan R, Julien C (2005) Combustion process for the preparation of LiCoVO4. US patent no. 2005/00535454, Mar 10Google Scholar
  394. 394.
    Lu CH, Lee WC, Liou SJ, Fey GTK (1999) Hydrothermal synthesis of LiNiVO4 cathode material for lithium ion batteries. J Power Sources 81–82:696–699CrossRefGoogle Scholar
  395. 395.
    Lu CH, Liou SJ (2000) Hydrothermal preparation of nanometer lithium nickel vanadium oxide powder at low temperature. Mater Sci Eng B 75:38–42CrossRefGoogle Scholar
  396. 396.
    Phuruangrat A, Thongtem T, Thongtem S (2007) Preparation and characterization of nano-crystalline LiCoVO4 and LiNiVO4 used as cathodes for lithium ion batteries. J Ceram Proc Res 8:450–452Google Scholar
  397. 397.
    Phuruangrat A, Thongtem T, Thongtem S (2007) Characterization of nano-crystalline LiNiVO4 synthesized by hydrothermal process. Mater Lett 61:3805–3808CrossRefGoogle Scholar
  398. 398.
    Reddy MV, Pecquenard B, Vinatier P, Levasseur A (2007) Synthesis and characterization of nanosized LiNiVO4 electrode material. J Power Sources 163:1040–1046CrossRefGoogle Scholar
  399. 399.
    Selvasekarapandian S, Bhuvaneswari MS (2005) Structural analysis of lithium nickel vanadate LixNiVO4 (x = 0.8, 1.0, 1.2). Indian J Phys 79:695–698Google Scholar
  400. 400.
    Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1999) Rare earth element (La) doped LiNiVO4 as cathode material for secondary lithium ion cells. Mater Sci Forum 315–317:105–112CrossRefGoogle Scholar
  401. 401.
    Reddy MV, Pecquenard B, Vinatier P, Levasseur A (2007) Structural and electrochemical studies of annealed LiNiVO4 thin films. Surf Interface Anal 39:653–659CrossRefGoogle Scholar
  402. 402.
    Reddy MV, Pecquenard B, Vinatier P, Levasseur A (2007) Cyclic voltammetry and galvanostatic cycling characteristics of LiNiVO4 thin films during lithium insertion and re/de-insertion. Electrochem Commun 9:409–415CrossRefGoogle Scholar
  403. 403.
    Julien C, Massot M, Pérez-Vicente C (2000) Structural and vibrational studies of LiNi1 − yCoyVO4 (0 ≤ y ≤ 1) cathodes materials for Li-ion batteries. Mater Sci Eng B 75:6–12CrossRefGoogle Scholar
  404. 404.
    Bhuvaneswari MS, Selvasekarapandian S, Kamishima O, Kawamura J, Hattori T (2005) Vibrational analysis of lithium nickel vanadate. J Power Sources 139:279–283CrossRefGoogle Scholar
  405. 405.
    Mai LQ, Chen W, Xu Q, Zhu QY, Han CH, Guo WL (2003) Influence of surface modification on structure and electrochemical performance of LiNi0.5Co0.5VO4. Solid State Ionics 161:205–208CrossRefGoogle Scholar
  406. 406.
    Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2009) Positive electrode: lithium iron phosphate. In: Garche J (ed) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 264–296Google Scholar
  407. 407.
    Julien CM, Mauger A, Ait-Salah A, Massot M, Gendron F, Zaghib K (2007) Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 13:395–411CrossRefGoogle Scholar
  408. 408.
    Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid-State Lett 11:A89–A93CrossRefGoogle Scholar
  409. 409.
    Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRefGoogle Scholar
  410. 410.
    Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142:389–390CrossRefGoogle Scholar
  411. 411.
    Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Synthesis and characterization of Li(Co0.5Ni0.5)PO4 cathode for Li-ion aqueous battery applications. Electrochem Solid-State Lett 14:A86–A89CrossRefGoogle Scholar
  412. 412.
    Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4. J Power Sources 145:74–81CrossRefGoogle Scholar
  413. 413.
    Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) Electrochemical and structural study of LiCoPO4-based electrodes. J Solid State Electrochem 8:558–564CrossRefGoogle Scholar
  414. 414.
    Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y (2004) Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material. Chem Mater 16:3399–3401CrossRefGoogle Scholar
  415. 415.
    Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transition occurring upon lithium insertion–extraction of LiCoPO4. Chem Mater 19:908–915CrossRefGoogle Scholar
  416. 416.
    Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432CrossRefGoogle Scholar
  417. 417.
    Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324CrossRefGoogle Scholar
  418. 418.
    Aravindan V, Cheah YL, Chui Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439CrossRefGoogle Scholar
  419. 419.
    Huang YH, Tong ZF, Liao S, Lan JJ (2011) The process reaction kinetics of synthesis and capacitance performance of LiNiPO4 from a precursor via solid-state reaction. Trans Beijing Inst Technol 31:872–877Google Scholar
  420. 420.
    Minakshi M, Singh P, Appadoo D, Martin DE (2011) Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim Acta 56:4356–4360CrossRefGoogle Scholar
  421. 421.
    Rabanal ME, Gutierrez MC, Garcia-Alvarado F, Gonzalo EC, Arroyo-de Dompablo ME (2006) Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling. J Power Sources 160:523–528CrossRefGoogle Scholar
  422. 422.
    Koleva V, Zhecheva E, Stoyanova R (2010) Ordered olivine-type lithium-cobalt and lithium–nickel phosphates prepared by a new precursor method. Eur J Inorg Chem 26:4091–4099CrossRefGoogle Scholar
  423. 423.
    Kandhasamy S, Pandey A, Minakshi M (2012) Polyvinyl-pyrrolidone assisted sol–gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochim Acta 60:170–176CrossRefGoogle Scholar
  424. 424.
    Eftekhari A (2004) Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J Electrochem Soc 151:A1456–A1460CrossRefGoogle Scholar
  425. 425.
    Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233CrossRefGoogle Scholar
  426. 426.
    Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics 17:201–207CrossRefGoogle Scholar
  427. 427.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries-Bella RS (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69CrossRefGoogle Scholar
  428. 428.
    Lloris JM, Pérez-Vicente C, Tirado JL (2002) Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem Solid-State Lett 5:A234–A237CrossRefGoogle Scholar
  429. 429.
    Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol–gel route batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A716–A723CrossRefGoogle Scholar
  430. 430.
    Gangulibabu N, Bhuvaneswari D, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) CAM sol–gel synthesized LiMPO4 (M = Co, Ni) cathodes for rechargeable lithium batteries. J Sol-Gel Sci Technol 49:137–144CrossRefGoogle Scholar
  431. 431.
    Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fen Mn, Co, Ni. Electrochem Commun 6:1144–1148CrossRefGoogle Scholar
  432. 432.
    Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sources 165:887–891CrossRefGoogle Scholar
  433. 433.
    Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82:075122CrossRefGoogle Scholar
  434. 434.
    Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189CrossRefGoogle Scholar
  435. 435.
    Goñi A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) Magnetic properties of the LiMPO4 (M = Co, Ni) compounds. J Magn Magn Mater 164:251–255CrossRefGoogle Scholar
  436. 436.
    Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192–1193CrossRefGoogle Scholar
  437. 437.
    Chupis IE (2000) About magnetoelectric effect in LiNiPO4. Fizika Nizkikh Temper (Kharkov) 26:578Google Scholar
  438. 438.
    Kornev I, Bichurin M, Rivera JP, Gentil S, Schmid H, Jansen AGM, Wyder P (2000) Magnetoelectric properties of LiCoPO4 and LiNiPO4. Phys Rev B Condens Matter 62:12247–12253CrossRefGoogle Scholar
  439. 439.
    Yamauchi K, Picozzi S (2010) Magnetic anisotropy in Li-phosphates and origin of magnetoelectricity in LiNiPO4. Phys Rev B: Condens Matter 81:024110CrossRefGoogle Scholar
  440. 440.
    Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633CrossRefGoogle Scholar
  441. 441.
    Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV, Schmid H, Rivera JP, Gentil S (2002) Raman scattering in a LiNiPO4 single crystal. Low Temp Phys 28:203–209CrossRefGoogle Scholar
  442. 442.
    Shang SL, Wang Y, Mei ZG, Hui XD, Liu ZK (2012) Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study. J Mater Chem 22:1142–1149CrossRefGoogle Scholar
  443. 443.
    Ficher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M = Mn, Fe, Co and Ni): insights into defect association, transport mechanisms and doping behaviour. Chem Mater 20:5907–5915CrossRefGoogle Scholar
  444. 444.
    Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Garcia-Amores JM, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemicalk performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LMPO4 (M = Fe and Ni). Chem Mater 13:1570–1576CrossRefGoogle Scholar
  445. 445.
    Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion cell cathodes. Ionics 8:17–26CrossRefGoogle Scholar
  446. 446.
    Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153CrossRefGoogle Scholar
  447. 447.
    Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2012) Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16:3911–3919Google Scholar
  448. 448.
    Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) Investigation of graphitic carbon foams/LiNiPO4 composites. J Solid State Electrochem 16:3791–3798CrossRefGoogle Scholar
  449. 449.
    Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams—LiNi1 − yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565CrossRefGoogle Scholar
  450. 450.
    Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8-V electrode material for lithium batteries. Electrochem Solid-State Lett 3:178–179CrossRefGoogle Scholar
  451. 451.
    Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: comparison of three coating techniques. J Power Sources 221:35–41CrossRefGoogle Scholar
  452. 452.
    Wolfenstine J, Read J, Allen J (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sources 163:1070–1073CrossRefGoogle Scholar
  453. 453.
    Wolfenstine J, Lee U, Poese B, Allen J (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sources 144:226–230CrossRefGoogle Scholar
  454. 454.
    Wolfenstine J, Poese B, Allen J (2004) Chemical oxidation of LiCoPO4. J Power Sources 138:281–282CrossRefGoogle Scholar
  455. 455.
    Ruffo R, Mari CM, Morazzoni F, Rosciano F, Scotti R (2007) Electrical and electrochemical behavior of several LiFexCo1 − xPO4 solid solutions as cathode materials for lithium ion batteries. Ionics 13:287–291CrossRefGoogle Scholar
  456. 456.
    Wolfenstine J (2006) Electrical conductivity of doped LiCoPO4. J Power Sources 158:1431–1435CrossRefGoogle Scholar
  457. 457.
    Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sources 196:4806–4810CrossRefGoogle Scholar
  458. 458.
    Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y, Miyanaga T, Watanabe I (2005) X-ray absorption spectroscopic study on the electronic structure of Li1 − xCoPO4 electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries. J Phys Chem B 109:11197–11203CrossRefGoogle Scholar
  459. 459.
    Dimesso L, Spanheimer C, Jaegermann W, Zhang Y, Yarin AL (2013) LiCoPO4—3D carbon nanofiber composites as possible cathode materials for high voltage applications. Electrochim Acta 97:38–42CrossRefGoogle Scholar
  460. 460.
    Devaraju MK, Rangappa D, Honma I (2012) Controlled synthesis of plate-like LiCoPO4 nanoparticles via supercritical method and their electrode property. Electrochim Acta 85:548–553CrossRefGoogle Scholar
  461. 461.
    Reddy MV, Subba-Rao GV, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode lithium vanadium fluorophosphates. J Power Sources 195:5768–5774CrossRefGoogle Scholar
  462. 462.
    Okada S, Ueno M, Uebou Y, Yamaki JI (2005) Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J Power Sources 146:565–569CrossRefGoogle Scholar
  463. 463.
    Khasanova NR, Gavrilov AN, Antipov EV, Bramnik KG, Hibst H (2011) Structural transformation of Li2CoPO4F upon Li-deintercalation. J Power Sources 196:355–360CrossRefGoogle Scholar
  464. 464.
    Stroukoff KR, Manthiram A (2011) Thermal stability of spinel Li1.1Mn1.9 − yMyO4 − zFz (M = Ni, Al, and Li, 0 ≤ y ≤0.3, and 0 ≤ z ≤ 0.2) cathodes for lithium ion batteries. J Mater Chem 21:10165–10170CrossRefGoogle Scholar
  465. 465.
    Koyama Y, Tanaka I, Adachi H (2000) New fluoride cathodes for rechargeable lithium batteries. J Electrochem Soc 147:3633–3636CrossRefGoogle Scholar
  466. 466.
    Dutreilh M, Chevalier C, El-Ghozzi M, Avignant D, Montel JM (1999) Synthesis and crystal structure of a new lithium nickel fluorophosphates Li2NiFPO4 with an ordered mixed anionic framework. J Solid State Chem 142:1–5CrossRefGoogle Scholar
  467. 467.
    Nagahama M, Hasegawa N, Okada S (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 157:A748–A752CrossRefGoogle Scholar
  468. 468.
    Amaresh S, Karthikeyan K, Kim KJ, Kim MC, Chung KY, Cho BW, Lee YS (2013) Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sources. doi:10.1016/j.jpowsour.2012.12.010 Google Scholar
  469. 469.
    Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM (2010) Structure and electrochemical properties of novel mixed Li(Fe1 − xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis. J Mater Chem 20:1659–1668CrossRefGoogle Scholar
  470. 470.
    Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2 − xMP2O7 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3937CrossRefGoogle Scholar
  471. 471.
    Xu KC, Cresce AVW (2012) Electrolytes in support of 5 V Li-ion chemistry. Patent appl number: 20120225359Google Scholar
  472. 472.
    La Mantia F, Huggins RA, Cui Y (2013) Oxidation processes on conducting carbon additives for lithium-ion batteries. J Appl Electrochem 43:1–17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Université Paris 6, PECSAParisFrance
  2. 2.Université Paris 6, IMPMCParis Cedex 05France

Personalised recommendations