Ionics

, Volume 19, Issue 10, pp 1359–1365

Tailoring of electrochemical properties of V2O5 thin films grown on flexible substrates using plasma-assisted activated reactive evaporation

Original Paper

Abstract

The vanadium pentoxide (V2O5) thin films have been deposited using home built activated reactive evaporation technique on indium tin oxide-coated flexible Kapton substrates and investigated their microstructural and electrochemical properties. X-ray diffraction pattern displayed predominant (001) orientation designating the orthorhombic structure of the films deposited at optimised growth conditions. The surface of the films is observed to be composed of vertical elliptical-shaped grains of size 98 nm distributed uniformly over the surface of the films provided with root mean square surface roughness of 9 nm as evidenced from atomic force microscopy studies. As-deposited V2O5 thin films demonstrated constant discharge capacity of about 60 μAh/(cm2μm) for 10 cycles at room temperature in the potential window of 4.0–2.5 V. The influence of silver (Ag) interlayer on electrochemical properties of V2O5 films was investigated and observed appreciable improvement in electrochemical performance of ‘V2O5/Ag/V2O5’ films. The multilayered V2O5/Ag/V2O5 films exhibited a discharge capacity of about 75 μAh/(cm2μm) provided with enhanced cycliability.

Keywords

Activated reactive evaporation Flexible substrates V2O5 thin films V2O5/Ag/V2O5 films Microstructural and electrochemical properties 

References

  1. 1.
    Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Thin-film lithium and lithium-ion batteries. Solid State Ionics 135:33–45CrossRefGoogle Scholar
  2. 2.
    Seng KH, Liu J, Guo ZP, Chen ZX, Jia D, Liu HK (2011) Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochem Commun 13:383–386CrossRefGoogle Scholar
  3. 3.
    Han H, Adams D, Mayer JW, Alford TL (2005) Characterization of the physical and electrical properties indium tin oxide on polyethylene napthalate. J Applied Physics 98(083705):1–8Google Scholar
  4. 4.
    Sonoyama N, Iwase K, Takatsuka H, Matsumura T, Imanishi N, Takeda Y (2009) Electrochemistry of LiMn2O4 epitaxial films deposited on various single crystal substrates. J Power Sources 189:561–565CrossRefGoogle Scholar
  5. 5.
    Pan H, Yang Y (2009) Effects of radio frequency sputtering powers on the microstructures and electrochemical properties of LiCoO2 thin films electrode. J Power Sources 189:633–637CrossRefGoogle Scholar
  6. 6.
    Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. J Power Sources 192:689–692CrossRefGoogle Scholar
  7. 7.
    Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells. J Electrochemical Society 143:2204–2211CrossRefGoogle Scholar
  8. 8.
    Cho TH, Park SM, Yoshio M, Hirai T, Hideshima Y (2005) Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method. J Power Sources 142:306–312CrossRefGoogle Scholar
  9. 9.
    Pomerantseva E, Gerasopoulos K, Chen X, Rubloff G, Ghodssi R (2012) Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries. J Power Sources 206:282–287CrossRefGoogle Scholar
  10. 10.
    Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Material Chemistry 19:2526–2552CrossRefGoogle Scholar
  11. 11.
    Jeon EJ, Shin YW, Nam SC, Cho WI, Soon YS (2001) Characterization of all solid-state thin-film batteries with V2O5 thin film cathodes using ex situ and in situ processes. J Electrochemical Society 148:A 318–A 322Google Scholar
  12. 12.
    Hari Krishna K, Hussain OM, Guilen C (2008) Photo and electrochromic properties of activated reactive evaporated MoO3 thin films grown on flexible substrates. Research Letters in Nanotechnology 2008:1–5CrossRefGoogle Scholar
  13. 13.
    Navone C, Tintignac S, Pereira-Ramosa JP, Baddour-Hadjean R, Salot R (2011) Electrochemical behaviour of sputtered c-V2O5 and LiCoO2 thin films for Solid State lithium microbatteries. Solid State Ionics 192:343–346CrossRefGoogle Scholar
  14. 14.
    Quinzeni I, Ferrari S, Quartarone E, Mustarelli P (2011) Structural, morphological and electrochemical properties of nanocrystalline V2O5 thin films deposited by means of radio frequency magnetron sputtering. J Power Sources 196:10228–10233CrossRefGoogle Scholar
  15. 15.
    Nandakumar NK, Seebauer EG (2011) Low temperature chemical vapour deposition of nanocrystalline V2O5 thin films. Thin Solid Films 519:3663–3668CrossRefGoogle Scholar
  16. 16.
    Wang H-Q, Li N, Guldal NS, Brabec CJ (2012) Nanocrystal V2O5 thin film as hole-extraction layer in normal architecture organic solar cells. Org Electron 13:3014–3021CrossRefGoogle Scholar
  17. 17.
    Lida Y, Kaneko Y, Kanno Y (2008) Fabrication of Pulsed laser deposited V2O5 thin films for electrochromic devices. J Materials Processing Technology 197:261–267CrossRefGoogle Scholar
  18. 18.
    Lin Y-S, Tsai C-W (2008) Reactive sputtering deposition of V2O5-z on PET/ITO substrates for electrochromic devices. Surf Coat Technol 202:5641–5645CrossRefGoogle Scholar
  19. 19.
    Jayalakshimi M, Mohan Rao M, Venugopal N, Kim K-B (2007) Hydrothermal synthesis of SnO2–O5 mixed oxide and electrochemical screening of carbon nano-tubes CNT, V2O5, V2O5−CNT and Sno2–O5−CNT electrodes for super capacitors. J Power Sources 166:578–583CrossRefGoogle Scholar
  20. 20.
    Guillen C, Herrero J (2006) Polycrystalline growth and recrystallization processes in sputtered ITO thin films. Thin Solid Films 510:260–264CrossRefGoogle Scholar
  21. 21.
    Hari Krishna K, Hussain OM, Guillen C (2010) Electrochromic properties of nanocrystalline WO3 thin films grown on flexible substrates by plasma-assisted evaporation technique. J Applied Physics A 99:921–929CrossRefGoogle Scholar
  22. 22.
    Menezes WG, Dayane M, Benedetti TM, Oliveira MM, Soares JF, Torresi RM, Zarbin AJG (2009) V2O5 nano particles obtained from a synthetic bariandite-like vanadium oxide: synthesis and characterization and electrochemical behaviour in an ionic liquid. J Colloid and Interface Science 337:586–593CrossRefGoogle Scholar
  23. 23.
    ASTM Joint Commission on Powder Diffraction standards File No. 9–387, 1974Google Scholar
  24. 24.
    Ramana CV, Hussain OM, Uthanna S, Srinivasulu Naidu B (1998) Influence of oxygen partial pressure on the optical properties of electron beam evaporated vanadium pentaoxide thin films. Opt Mater 10:101–107CrossRefGoogle Scholar
  25. 25.
    Ng SH, Patey TJ, Buchel R, Krumeich F, Wang JZ, Liu HK, Pratsinis SE, Novak P (2009) Flame spray pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes. Phys Chem Chem Phys 11:3748–3755CrossRefGoogle Scholar
  26. 26.
    Park YJ, Ryu KS, Kim KM, Nam-Gyu Park MG, Kang SHC (2002) Electrochemical properties of vanadium oxide thin films deposited by r.f. sputtering. Solid State Ionics 154–155:229–235CrossRefGoogle Scholar
  27. 27.
    Yoon YS, Kim JS, Choi SH (2004) Structural and electrochemical properties vanadium oxide thin films grown by d.c and r.f reactive sputtering at room temperature. Thin Solid Films 460:41–47CrossRefGoogle Scholar
  28. 28.
    Oukassi S, Salot R, Pereira-Ramos JP (2009) Elaboration and characterization r.f. deposited V2O5 positive electrode for thin film batteries. Appl Surf Sci 256:149–155CrossRefGoogle Scholar
  29. 29.
    Navone C, Pereira-Ramos JP, Baddour-Hadjean R, Salot R (2005) Electrochemical and structural properties of V2O5 thin films prepared by DC sputtering. J Power Sources 146:327–330CrossRefGoogle Scholar
  30. 30.
    Shrotriya V, Li G, Yao Y, Chu C-W, Yang Y (2006) Transition metal oxides as the buffer layer for polymer photovoltaic cells. J Applied Physics Letters 88:1–3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità della CalabriaRendeItaly
  2. 2.Thin Films Laboratory, Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations