Ionics

, Volume 19, Issue 4, pp 657–663 | Cite as

Highly sensitive electrochemical detection of adenine on a graphene-modified carbon ionic liquid electrode

  • Wei Sun
  • Jun Liu
  • Xiaomei Ju
  • Le Zhang
  • Xiaowei Qi
  • Ni Hui
Original Paper

Abstract

A new electrochemical method for the sensitive detection of adenine was established on a chitosan (CTS)- and graphene (GR)-modified carbon ionic liquid electrode (CILE). CILE was prepared by mixing 1-butylpyridinium hexafluorophosphate (BPPF6) and paraffin with graphite powder. Due to the synergistic effects of GR, CILE, and the interaction of GR with IL on the electrode surface, the electrochemical performance of CTS/GR/CILE were greatly enhanced. Electrochemical behaviors of adenine on the modified electrode was investigated with a single well-defined oxidation peak appeared. The electrochemical reaction of adenine was an adsorption-controlled irreversible process, and the electrochemical parameters were further calculated. Under the optimal conditions, the oxidation peak current was proportional to adenine concentration in the range from 1.0 nmol L−1 to 70.0 μmol L−1 with a detection limit of 0.286 nmol L−1 (3σ) by differential pulse voltammetry. The established method showed the advantages such as good selectivity, stability, and repeatability.

Keywords

Adenine Graphene 1-Butylpyridinium hexafluorophosphate Cyclic voltammetry 

References

  1. 1.
    Saenger W, Cantor CR (1984) Principles of nucleic acid structure. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Zanoni MVB, Rogers EI, Hardacre C, Compton RG (2010) The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids. Anal Chim Acta 659:115–121CrossRefGoogle Scholar
  3. 3.
    Dryhurst G (1977) Electrochemistry of biological molecules. Academic, New YorkGoogle Scholar
  4. 4.
    Palanti S, Marrazza G, Mascini M (1996) Electrochemical DNA probes. Anal Lett 29:2309–2331CrossRefGoogle Scholar
  5. 5.
    Teh F, Yang X, Gong H, Tan SN (2004) Voltammetric and differential pulse stripping study of adenine on a sol-gel derived carbon composite electrode. Electroanalysis 16:769–773CrossRefGoogle Scholar
  6. 6.
    Wu K, Fei J, Bai W, Hu S (2003) Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal Bioanal Chem 376:205–209Google Scholar
  7. 7.
    Rajendra NG, Sunita B, Rakesh KS (2011) Electrochemicmal sensor for the simultaneous voltammetric determination of adenosine and adenine. Indian J Chem 50A:1026–1034Google Scholar
  8. 8.
    Song Y, Li JZ (2011) Direct electrochemical determination of adenine using HPMαFP-modified glassy carbon electrode in commercial pharmaceutical products. Instrum Sci Technol 39:261–272CrossRefGoogle Scholar
  9. 9.
    Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126–135CrossRefGoogle Scholar
  10. 10.
    Maleki N, Safavi A, Tajabadi F (2006) High-Performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820–3826CrossRefGoogle Scholar
  11. 11.
    Shiddiky MJA, Torriero AAJ (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787CrossRefGoogle Scholar
  12. 12.
    Zhu ZH, Qu LN, Guo YQ, Zeng Y, Sun W, Huang XT (2010) Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. Sensors Actuators B 151:146–152CrossRefGoogle Scholar
  13. 13.
    Sun W, Xi MY, Zhang L, Zhan TR, Gao HW, Jiao K (2010) Electrochemical behaviors of thymine on a new ionic liquid modified carbon electrode and its detection. Electrochim Acta 56:222–226CrossRefGoogle Scholar
  14. 14.
    Sun W, Gao RF, Jiao K (2007) Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B 111:4560–4567CrossRefGoogle Scholar
  15. 15.
    Sun W, Qin P, Zhao RJ, Jiao K (2010) Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode. Talanta 80:2177–2181CrossRefGoogle Scholar
  16. 16.
    Sun W, Yang MX, Liu SF, Jiao K (2008) Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochem Commun 10:298–301CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Zheng JB (2007) Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim Acta 52:7210–7216CrossRefGoogle Scholar
  18. 18.
    Sun W, Li YZ, Yang MX, Jiao K (2008) Application of carbon ionic liquid electrode for the electrooxidative determination of catechol. Sensors Actuators B 133:387–392CrossRefGoogle Scholar
  19. 19.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  20. 20.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965CrossRefGoogle Scholar
  21. 21.
    Shao YY, Wang J, Wu H, Liu J, Aksay TA, Lina YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRefGoogle Scholar
  22. 22.
    Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRefGoogle Scholar
  23. 23.
    Ruan CX, Li TT, Niu QJ, Lu M, Lou J, Gao WM, Sun W (2012) Electrochemical myoglobin biosensor based on graphene–ionic liquid–chitosan bionanocomposites: direct electrochemistry and electrocatalysis. Electrochim Acta 64:183–189CrossRefGoogle Scholar
  24. 24.
    Ruan CX, Xu L, Wang XZ, Lou J, Gao WM, Sun W (2012) Graphene functionalized graphite electrode with diphenylacetylene for sensitive electrochemical determination of adenosine-5′-triphosphate. Electroanalysis 24:286–292CrossRefGoogle Scholar
  25. 25.
    Sun W, Li YZ, Duan YY, Jiao K (2008) Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens Bioelectron 24:988–993CrossRefGoogle Scholar
  26. 26.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  27. 27.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  28. 28.
    Guo SJ, Wen D, Zhai YM, Dong SJ, Wang EK (2011) Ionic liquid–graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene. Biosens Bioelectron 26:3475–3481CrossRefGoogle Scholar
  29. 29.
    Ghalkhani M, Shahrokhian S (2010) Application of carbon nanoparticle/chitosan modified electrode for the square-wave adsorptive anodic striping voltammetric determination of niclosamide. Electrochem Commun 12:66–69CrossRefGoogle Scholar
  30. 30.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28CrossRefGoogle Scholar
  31. 31.
    Xi MY, Duan YY, Li X, Qu LN, Sun W, Jiao K (2010) Carbon electrode modified with ionic liquid and multi-walled carbon nanotubes for voltammetric sensing of adenine. Microchim Acta 170:53–58CrossRefGoogle Scholar
  32. 32.
    Zhou LN, Li YM, Ye BX (2011) Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2]arene[2] triazine Langmuir–Blodgett film. Microchim Acta 173:285–291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Wei Sun
    • 1
    • 2
  • Jun Liu
    • 2
  • Xiaomei Ju
    • 2
  • Le Zhang
    • 2
  • Xiaowei Qi
    • 2
  • Ni Hui
    • 3
  1. 1.College of Chemistry and Chemical EngineeringHainan Normal UniversityHaikouPeople’s Republic of China
  2. 2.College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.College of Chemistry and PharmacyQingdao Agriculture UniversityQingdaoPeople’s Republic of China

Personalised recommendations