Skip to main content
Log in

An electrochemical study on the substituted spinel LiMn1.95Cr0.05O4

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cyclic voltammetry, galvanostatic charge–discharge technique, potentiostatic intermittent titration technique (PITT), and electrochemical impedance spectroscopy (EIS) were used to study the behavior of a LiMn1.95Cr0.05O4 (substituted lithium–manganese spinel) electrode in nonaqueous electrolytes at 25 °C. Quantitative and qualitative changes of the electrode transport parameters as functions of lithium concentration were analyzed. Several equivalent circuits are discussed; the results obtained by different methods are compared. The PITT and EIS results are in good agreement; the chemical diffusion coefficient D varies within 10−14–10−9 cm2 s−1 depending on the lithium content in the LixMn1.95Cr0.05O4 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) J Power Sources 195:2419

    Article  CAS  Google Scholar 

  2. Fergus JW (2010) J Power Sources 195:939

    Article  CAS  Google Scholar 

  3. Yi T-F, Hao Ch-L, Yue C-B, Zhu R-S, Shu J (2009) Synth Met 159:1255

    Article  CAS  Google Scholar 

  4. Amarilla JM, Petrov K, Pico F, Avdeev G, Rojo JM, Rojas RM (2009) J Power Sources 191:591

    Article  CAS  Google Scholar 

  5. Thirunakaran R, Sivashanmugam A, Gopukumar S, Rajalakshmi R (2009) J Power Sources 187:565

    Article  CAS  Google Scholar 

  6. Zhang L, Yabu T, Taniguchi I (2009) Materials Research Bull 44:707

    Article  CAS  Google Scholar 

  7. Churikov AV, Kachibaya EI, Sycheva VO, Ivanishcheva IA, Imnadze RI, Paikidze TV, Ivanishchev AV (2009) Rus J Electrochem 45:175

    Article  CAS  Google Scholar 

  8. Nikolowski K, Bramnik NN, Ehrenberg H (2008) Ionics 14:121

    Article  CAS  Google Scholar 

  9. Wakihara M, Ikuta H, Uchimoto Y (2002) Ionics 8:329

    Article  CAS  Google Scholar 

  10. Peizhi S, Yudai H, Lang L, Dianzeng J, Zaiping G (2006) J Solid State Electrochem 10:929

    Article  Google Scholar 

  11. Fu Y-P, Su Y-H, Lin C-H, Wu S-H (2004) Solid State Ion 166:137

    Article  CAS  Google Scholar 

  12. Mohamedi M, Makino M, Dokko K, Itoh T, Uchida I (2002) Electrochim Acta 48:79

    Article  CAS  Google Scholar 

  13. Lu D, Li W, Zuo X, Yuan Z, Huang Q (2007) J Phys Chem C 111:12067

    Article  CAS  Google Scholar 

  14. Zhuang Q-C, Wei T, Du L-L, Cui Y-L, Fang L, Sun S-G (2010) J Phys Chem C 114:8614

    Article  CAS  Google Scholar 

  15. Shin FY, Fung KZ (2006) J Power Sources 159:179

    Article  Google Scholar 

  16. Xie J, Kohno K, Matsumura T, Imanishi N, Hirano A, Takeda Y, Yamamoto O (2008) Electrochim Acta 54:376

    Article  CAS  Google Scholar 

  17. Wen CJ, Boukamp BA, Huggins RA (1979) J Electrochem Soc 126:2258

    Article  CAS  Google Scholar 

  18. Pyun S-I, Kim S-W (2001) J Power Sources 97–98:371

    Article  Google Scholar 

  19. Weppner W, Huggins RA (1977) J Electrochem Soc 124:1569

    Article  CAS  Google Scholar 

  20. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV (2010) Electrochim Acta 55:2939

    Article  CAS  Google Scholar 

  21. Ammundsen B, Roziere J, Islam MS (1997) J Phys Chem B 101:8156

    Article  CAS  Google Scholar 

  22. Chung KY, Kim K-B (2004) Electrochim Acta 49:3327

    Article  CAS  Google Scholar 

  23. Alcantara R, Jaraba M, Lavela P, Tirado JL (2003) Chem Mater 15:2376

    Article  CAS  Google Scholar 

  24. Alcantara R, Jaraba M, Lavela P, Tirado JL (2002) Electrochim Acta 47:1829

    Article  CAS  Google Scholar 

  25. Levi E, Levi MD, Salitra G, Aurbach D, Oesten R, Heider U, Heider L (1999) Solid State Ion 126:109

    Article  CAS  Google Scholar 

  26. Montella C (2002) J Electroanal Chem 518:61

    Article  CAS  Google Scholar 

  27. Montella C (2006) Electrochim Acta 51:3102

    Article  CAS  Google Scholar 

  28. Churikov AV (2002) Rus J Electrochem 38:103

    Article  CAS  Google Scholar 

  29. Churikov AV, Volgin MA, Pridatko KI (2002) Electrochim Acta 47:2857

    Article  CAS  Google Scholar 

  30. Churikov AV, Ivanischev AV (2003) Electrochim Acta 48:3677

    Article  CAS  Google Scholar 

  31. Montella C, Michel R, Diard JP (2007) J Electroanal Chem 608:37

    Article  CAS  Google Scholar 

  32. Levi MD, Aurbach D (1997) J Phys Chem 101:4630

    Article  CAS  Google Scholar 

  33. Churikov AV, Pridatko KI, Ivanishchev AV, Ivanishcheva IA, Gamayunova IM, Zapsis KV, Sycheva VO (2008) Rus J Electrochem 44:550

    Article  CAS  Google Scholar 

  34. Ivanishchev AV, Churikov AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM (2008) Rus J Electrochem 44:510

    Article  CAS  Google Scholar 

  35. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM, Sycheva VO (2008) Rus J Electrochem 44:530

    Article  CAS  Google Scholar 

  36. Wang GG, Wang JM, Mao WQ, Shao HB, Zhang JQ, Cao CN (2005) J Solid Sate Electrochem 9:524

    Article  CAS  Google Scholar 

  37. Wu XM, Chen Sh, He ZQ, Xiao ZB, Ma MY, Liu JB (2008) Ceramics Int 34:1387

    Article  CAS  Google Scholar 

  38. Markovsky B, Levi MD, Aurbach D (1998) Electrochim Acta 43:2287

    Article  CAS  Google Scholar 

  39. Levi MD, Aurbach D (1999) Electrochim Acta 45:167

    Article  CAS  Google Scholar 

  40. Churikov AV, Nimon ES, Lvov AL (1997) Electrochim Acta 42:179

    Article  CAS  Google Scholar 

  41. Churikov AV, Lvov AL (1998) Rus J Electrochem 34:584

    CAS  Google Scholar 

  42. Churikov AV, Nimon ES, Lvov AL (1998) Rus J Electrochem 34:591

    CAS  Google Scholar 

  43. Wan Ch, Nuli Y, Zhuang J, Jiang Z (2002) Mater Letters 56:357

    Article  CAS  Google Scholar 

  44. A-K. Hjelm, G. Lindbergh, Electrochim. Acta. 47 (2002) 1747.

    Google Scholar 

  45. Bond AM, Compton RG, Fielder DA, Inzelt G, Kahlert H, Komorsky-Lovrić Š, Lohse H, Lovrić M, Marken F, Neudecl A, Retter U, Scholz F, Stojek Z (2002) Electroanalytical methods. Guide to experiments and applications, Springer

    Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the Russian Foundation for Basic Research (project #10-03-00301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei V. Churikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churikov, A.V., Romanova, V.O. An electrochemical study on the substituted spinel LiMn1.95Cr0.05O4 . Ionics 18, 837–844 (2012). https://doi.org/10.1007/s11581-012-0741-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0741-9

Keywords

Navigation