Ionics

, Volume 19, Issue 1, pp 99–104 | Cite as

Electrical transport characteristics of ZnO–Bi2O3–B2O3 glasses

  • Koushik Majhi
  • Rahul Vaish
  • Gadige Paramesh
  • K. B. R. Varma
Original Paper

Abstract

Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D = 0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18 ± 4 ppm °C−1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.

Keywords

Zinc–bismuth–borate glass Ionic conductivity Electric modulus Dielectric relaxation 

References

  1. 1.
    Murugan GS, Varma KBR (2002) Lithium borate-strontium bismuth tantalate glass nanocomposite: a novel material for nonlinear optic and ferroelectric applications. J Mater Chem 12:1426–1436CrossRefGoogle Scholar
  2. 2.
    Vaish R, Rodriguez V, Maglione M, Etourneau J, Varma KBR (2010) Laser-Induced Periodic Surface Crystalline Patterns on SrO–0.5Li2O–4.5B2O3 and BaO–0.5Na2O–4.5B2O3 Glasses and Optical Second Harmonic Generation. Int J Appl Glas Sci 1:350–357CrossRefGoogle Scholar
  3. 3.
    Murugan GS, Varma KBR (2002) Pyroelectric, ferroelectric and optical properties of glass nanocomposite: lithium borate—bismuth tungstate. Ferroelectrics 266:259–275Google Scholar
  4. 4.
    Barbier J, Cranswick LMD (2006) The non-centrosymmetric borate oxides, MBi2B2O7 (M = Ca, Sr). J Solid State Chem 179:3958–3964CrossRefGoogle Scholar
  5. 5.
    Li F, Hou X, Pan S, Wang X (2009) Growth, structure, and optical properties of a congruent melting oxyborate, Bi2ZnOB2O6. Chem Mater 21:2846–2850CrossRefGoogle Scholar
  6. 6.
    Koushik M, Varma KBR (2009) Structural, dielectric, impedance and optical properties of CaBi2B2O7 glasses and glass-nanocrystal composites. Mater Chem Phys 117:494–499CrossRefGoogle Scholar
  7. 7.
    Koushik M, Varma KBR (2008) Structural, dielectric and optical properties of transparent glasses and glass-ceramics of SrBi2B2O7. J Non-Cryst Solids 354:4543–4549CrossRefGoogle Scholar
  8. 8.
    Hashimoto T, Shimoda Y, Nasu H, Ishihara A (2011) ZnO–Bi2O3–B2O3 glasses as molding glasses with high refractive indices and low coloration codes. J Am Ceram Soc 94:2061–2066CrossRefGoogle Scholar
  9. 9.
    Burns A, Chryssikos GD, Tombari E, Cole RH, Risen WM (1989) Dielectric spectra of ionic conducting oxide glasses to 2 GHz. Phys Chem Glasses 30:264Google Scholar
  10. 10.
    Lim BS, Vaysleyb AV, Nowick AS (1993) Nature of the constant-loss dielectric response of various crystals and glasses. Appl Phys A 56:8–14CrossRefGoogle Scholar
  11. 11.
    Ngai KL (1999) Properties of the constant loss in ionically conducting glasses, melts, and crystals. J Chem Phys 110:10576CrossRefGoogle Scholar
  12. 12.
    Paramesh G, Varma KBR (2011) Near constant loss dielectric response in 2Bi2O3–B2O3 glasses. Int J Appl Glas Sci 2:235–242CrossRefGoogle Scholar
  13. 13.
    Bosman AJ, Havinga EE (1963) Temperature dependence of dielectric constants of cubic ionic compounds. Phys Rev 129:1593–1600CrossRefGoogle Scholar
  14. 14.
    Horrop PJ (1969) Temperature coefficients of capacitance of solids. J Mater Sci 4:370–374CrossRefGoogle Scholar
  15. 15.
    Vaish R, Varma KBR (2009) Low loss and frequency (1 kHz–1 MHz) independent dielectric characteristics of 3BaO-3TiO2-B2O3 glasses. J Appl Phys 106:114109CrossRefGoogle Scholar
  16. 16.
    Vaish R, Varma KBR (2011) Electrical relaxation and transport in 0.5Cs2O–0.5Li2O–3B2O3 glasses. IEEE Trans Dielectr Electr Insul 18:155–161CrossRefGoogle Scholar
  17. 17.
    Provenzano V, Boesch LP, Volterra V, Moynihan CT, Macedo PB (1972) Electrical relaxation in Na2O–3SiO2 glass. J Am Ceram Soc 55:492–496CrossRefGoogle Scholar
  18. 18.
    Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85CrossRefGoogle Scholar
  19. 19.
    Kohlrausch R (1854) Theorie Des Elektrischen Rückstandes in Der Leidner Flasche. Prog Ann Phys 91:179–213Google Scholar
  20. 20.
    Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356–1365CrossRefGoogle Scholar
  21. 21.
    Jonscher AK (1999) Low-loss dielectrics. J Mater Sci 34:3071–3082CrossRefGoogle Scholar
  22. 22.
    León C, Lunkenheimer P, Ngai KL (2001) Test of universal scaling of ac conductivity in ionic conductors. Phys Rev B 64:1843041–1843045CrossRefGoogle Scholar
  23. 23.
    Ngai KL, Rendell RW (2000) Interpreting the real part of the dielectric permittivity contributed by mobile ions in ionically conducting materials. Phys Rev B 61:9393–9398CrossRefGoogle Scholar
  24. 24.
    Yang YS et al (2004) Ionic conductivity properties in bismuth germanate silicate glasses at various temperature. J Phys Chem B 108:16659–16663CrossRefGoogle Scholar
  25. 25.
    Baia L, Stefan R, Kiefer W, Popp J, Simon S (2002) Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J Non-Cryst Solids 303:379–386CrossRefGoogle Scholar
  26. 26.
    Bale S, Rahman S, Awasthi AM, Sathe V (2008) Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses. J Alloy Comp 460:699–703CrossRefGoogle Scholar
  27. 27.
    Baia L, Stefan R, Kiefer W, Simon S (2005) Structural characteristics of B2O3–Bi2O3 glasses with high transition metal oxide content. J Raman Spectrosc 36:262–266CrossRefGoogle Scholar
  28. 28.
    Inoue T, Honma T, Dimitrov V, Komatsu T (2010) Approach to thermal properties and electronic polarizability from average single bond strength in ZnO–Bi2O3–B2O3 glasses. J Solid State Chem 183:3078–3085CrossRefGoogle Scholar
  29. 29.
    Konijnendijk WL, Stevels JM (1975) The structure of borate glasses studied by Raman scattering. J Non-Cryst Solids 18:307–331CrossRefGoogle Scholar
  30. 30.
    Kreidl NJ (1983) In Glass: science and technology. Academic Press, New York, pp 1–49Google Scholar
  31. 31.
    Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851CrossRefGoogle Scholar
  32. 32.
    Dumbaugh WH, Lapp JC (1992) Heavy-metal oxide glasses. J Am Ceram Soc 75:2315–2326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Koushik Majhi
    • 1
  • Rahul Vaish
    • 1
  • Gadige Paramesh
    • 1
  • K. B. R. Varma
    • 1
  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations