Ionics

, Volume 19, Issue 2, pp 215–220

Preparation of Co3O4 nanoplate/graphene sheet composites and their synergistic electrochemical performance

  • Lin Wang
  • Dianlong Wang
  • Junsheng Zhu
  • Xiaoshi Liang
Original Paper

Abstract

Co3O4 nanoplate/graphene sheet composites were prepared through a two-step synthetic method. The composite material as prepared was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The platelet-like morphology of Co3O4 leads to a layer-by-layer-assembled structure of the composites and a good dispersion of Co3O4 nanoplates on the surface of graphene sheets. The electrochemical characteristics indicate that the specific capacitance of the composites is 337.8 F g−1 in comparison with the specific capacitance of 204.4 F g−1 without graphene sheets. Meanwhile, the composites have an excellent rate capability and cycle performance. The results show that the unique microstructure of the composites enhances the electrochemical capacitive performance of Co3O4 nanoplates due to the three-dimensional network of graphene sheets for electron transport increasing electric conductivity of the electrode and providing unobstructed pathways for ionic transport during the electrochemical reaction.

Keywords

Co3O4 Nanoplates Graphene sheets Thermal treatment Supercapacitors 

References

  1. 1.
    Burke A (2007) Electrochim Acta 53:1083CrossRefGoogle Scholar
  2. 2.
    Burke A (2000) J Power Sources 91:37CrossRefGoogle Scholar
  3. 3.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245CrossRefGoogle Scholar
  4. 4.
    Zhang H, Zhang WF, Cheng J, Cao GP, Yang YS (2008) Solid State Ion 179:1946CrossRefGoogle Scholar
  5. 5.
    Fang BZ, Binder L (2006) J Power Sources 163:616CrossRefGoogle Scholar
  6. 6.
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987CrossRefGoogle Scholar
  7. 7.
    Cormie A, Cross A, Hollenkamp AF, Donne SW (2010) Electrochim Acta 55:7470CrossRefGoogle Scholar
  8. 8.
    Wu MS, Huang CY, Lin KH (2009) J Power Sources 186:557CrossRefGoogle Scholar
  9. 9.
    Wang YG, Xia YY (2006) Electrochim Acta 51:3223CrossRefGoogle Scholar
  10. 10.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498CrossRefGoogle Scholar
  11. 11.
    Hou JB, Shao YY, Ellis MW, Moore RB, Yi BL (2011) Phys Chem Chem Phys 13:15384CrossRefGoogle Scholar
  12. 12.
    Ji LW, Li Z, Alcoutlabi M, Zhang XW (2011) Energy Environ Sci 4:2682CrossRefGoogle Scholar
  13. 13.
    Wang DH, Choi DW, Li J, Yang ZG, Nie ZM, Kou R, Hu DH, Wang CM, Saraf LV, Zhang JG, Aksay IA, Liu J (2009) ACS Nano 4:907CrossRefGoogle Scholar
  14. 14.
    Ji LW, Tan ZK, Kuykendall TR, Aloni S, Xun S, Lin E, Battaglia V, Zhang YG (2011) Phys Chem Chem Phys 13:7170CrossRefGoogle Scholar
  15. 15.
    Chen YL, Hu ZA, Chang YQ, Wang HW, Zhang ZY, Yang YY, Wu HY (2011) J Phys Chem C 115:2563CrossRefGoogle Scholar
  16. 16.
    Paek SM, Yoo EJ, Honma I (2009) Nano Lett 9:72CrossRefGoogle Scholar
  17. 17.
    Li YM, Lv XJ, Lu J, Li JH (2010) J Phys Chem C 114:21770CrossRefGoogle Scholar
  18. 18.
    Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu DC, Tu JP (2011) Electrochim Acta 56:2306CrossRefGoogle Scholar
  19. 19.
    Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Carbon 48:3825CrossRefGoogle Scholar
  20. 20.
    Lee H, Kang J, Cho MS, Choi JB, Lee Y (2011) J Mater Chem 21:18215CrossRefGoogle Scholar
  21. 21.
    Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) ACS Nano 4:2822CrossRefGoogle Scholar
  22. 22.
    Wang GX, Shen XP, Horvat J, Wang B, Liu H, Wexler D, Yao J (2009) J Phys Chem C 113:4357CrossRefGoogle Scholar
  23. 23.
    Srinivasan V, Weidner JW (2002) J Power Sources 108:15CrossRefGoogle Scholar
  24. 24.
    Yang L, Cheng S, Ding Y, Zhu XB, Wang ZL, Liu ML (2012) Nano Lett 12:321CrossRefGoogle Scholar
  25. 25.
    Wang GX, Shen XP, Yao J, Wexler D, Ahn JH (2009) Electrochem Commun 11:546CrossRefGoogle Scholar
  26. 26.
    Lang JW, Yan XB, Xue QJ (2011) J Power Sources 196:7841CrossRefGoogle Scholar
  27. 27.
    Yan J, Wei T, Qiao WM, Shao B, Zhao QK, Zhang LJ, Fan ZJ (2010) Electrochim Acta 55:6973CrossRefGoogle Scholar
  28. 28.
    Wang HW, Hu ZA, Chang YQ, Chen YL, Zhang ZY, Yang YY, Wu HY (2011) Mater Chem Phys 130:672CrossRefGoogle Scholar
  29. 29.
    Gao YY, Chen SL, Cao DX, Wang GL, Yin JL (2010) J Power Sources 195:1757CrossRefGoogle Scholar
  30. 30.
    Yuan YF, Xia XH, Wu JB, Huang XH, Pei YB, Yang JL, Guo SY (2011) Electrochem Commun 13:1123CrossRefGoogle Scholar
  31. 31.
    Qing XX, Liu SQ, Huang KL, Lv KZ, Yang YP, Lu ZG, Fang D, Liang XX (2011) Electrochim Acta 56:4985CrossRefGoogle Scholar
  32. 32.
    Xu J, Gao L, Cao JY, Wang WC, Chen ZD (2010) Electrochim Acta 56:732CrossRefGoogle Scholar
  33. 33.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
  34. 34.
    Zhao B, Song JS, Liu P, Xu WW, Fang T, Jiao Z, Zhang HJ, Jiang Y (2011) J Mater Chem 21:18792CrossRefGoogle Scholar
  35. 35.
    Barbero C, Planes GA, Miras MC (2001) Electrochem Commun 3:113CrossRefGoogle Scholar
  36. 36.
    Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097CrossRefGoogle Scholar
  37. 37.
    Bao SJ, Li CM, Guo CX, Qiao Y (2008) J Power Sources 180:676CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lin Wang
    • 1
  • Dianlong Wang
    • 1
  • Junsheng Zhu
    • 1
  • Xiaoshi Liang
    • 1
  1. 1.School of Chemical Engineering & TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations