Advertisement

Ionics

, Volume 18, Issue 9, pp 891–898 | Cite as

Synthesis and evaluation of thermal, electrical, and electrochemical properties of Ba0.5Sr0.5Co0.04Zn0.16Fe0.8O3–δ as a novel cathode material for IT-SOFC applications

  • M. Haritha
  • M. Buchi SureshEmail author
  • Roy Johnson
Original Paper

Abstract

Ba0.5Sr0.5[CoxZn0.2-x]Fe0.8O3–δ, (x = 0, 0.04, 0.08, 0.12) cathode formulations were successfully synthesized by solid state reactions and the effect of cobalt doping at Zn site of Ba0.5Sr0.5Zn0.2Fe0.8O3–δ (BSZF0.2) on the electrical conductivity, the polarization resistance and electrochemical behavior was evaluated. X-ray diffraction patterns indicate that a single cubic perovskite phase of Ba0.5Sr0.4Co0.8Fe0.2O3–δ oxide is successfully obtained. Ba0.5Sr0.5Co0.04Zn0.16Fe0.8O3–δ (BSCZF0.16) exhibited a high electrical conductivity of 10 S/cm at 400 °C in comparison to the BSZF0.2 showing 5.5 S/cm. Further, BSCZF0.16 also possess a low polarization resistance as low as 0.22, 0.38, 0.87, and 1.55 Ω cm2 at 750, 700, 650, and 600 °C in air, respectively. Accordingly, a low activation energy value of 149.8 kJ/mol for BSCZF0.16 in comparison to 159.4 kJ/mol for BSZF0.2 indicates high catalytic efficiency. Enhancement of desirable properties such as electrical conductivity in combination with low-polarization resistance and low-activation energy values can be attributed to the coexistence of Co and Zn in the B-site of BSCZF0.16 leading to the multivalent states which contributes to the enhanced electron transport properties demonstrating BSCZF0.16 as a better cathode for intermediate temperature solid oxide fuel cells applications.

Keywords

Cathode Perovskite AC impedance Polarization resistance Electrical conductivity 

References

  1. 1.
    Huijsmans JPP, Van Berkel FPF, Christie GM (1998) J Power Sources 71:107–110CrossRefGoogle Scholar
  2. 2.
    Zhu B (2009) Int J Energy Res 33(13):1126–1137CrossRefGoogle Scholar
  3. 3.
    Zhou W, Ran R, Shao Z, Jin W, Xu N (2008) J Power Sources 182:24–31CrossRefGoogle Scholar
  4. 4.
    Xia C, Yang L, Meng G (2004) Fuel Cells 4:41–47CrossRefGoogle Scholar
  5. 5.
    Juhl M, Primdahl S, Manon C, Mogensen M (1996) J Power Sources 61:173–181CrossRefGoogle Scholar
  6. 6.
    Subramania A, Sharada T, Muzhumathi S (2007) J Power Sources 165:728–732CrossRefGoogle Scholar
  7. 7.
    Zheng F, Pederson LR (1999) J Electrochem Soc 146:2810CrossRefGoogle Scholar
  8. 8.
    De Souza RA, Kilner JA (1998) Solid State Ionics 106:175CrossRefGoogle Scholar
  9. 9.
    Shao ZP, Haile SM (2004) Nature 431:170CrossRefGoogle Scholar
  10. 10.
    Sun X, Li S, Sun J, Liu X, Zhu B (2007) Int J Electrochem Sci 2:462–468Google Scholar
  11. 11.
    Shao Z, Xiong G, Yang W, Lin L (2001) Sep Purif Technol 25(1–3):97CrossRefGoogle Scholar
  12. 12.
    Kharton VV, Sobyanin VA, Belyaev VD, Semin GL, Veniaminov SA, Tsipis EV, Yaremchenko AA, Valento AA, Marozau IP, Frade JR, Rocha J (2004) Catal Commun 5:311CrossRefGoogle Scholar
  13. 13.
    Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Solid State Ionics 177:3187CrossRefGoogle Scholar
  14. 14.
    Yakovlev S, Yoo CY, Fang S, Bouwmeester HJM (2010) Appl Phys Lett 96:254101CrossRefGoogle Scholar
  15. 15.
    Wang H, Tablet C, Feldoff A, Caro J (2005) Adv Mater 17:1785–1788CrossRefGoogle Scholar
  16. 16.
    Wei B, Lu Z, Huang X, Liu Z, Miao J, Li N, Su W (2007) J Am Ceram Soc 90:3364–3366CrossRefGoogle Scholar
  17. 17.
    Suresh MB, Yeh TH, Chou CC (2010) Integr Ferroelectr 121(1):113–119CrossRefGoogle Scholar
  18. 18.
    Park J, Zou J, Yoon H, Kim G, Chung JS (2011) Int J Hydrog Energy 36:6184CrossRefGoogle Scholar
  19. 19.
    Zhou W, Ran R, Shao Z (2009) J Power Sources 192:231–246CrossRefGoogle Scholar
  20. 20.
    Wang Q, Yan Y, Han M, Zhu P (2009) Rare Metals 28(1):39–42CrossRefGoogle Scholar
  21. 21.
    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: Fundamentals, design and applications. Elsevier, New YorkGoogle Scholar
  22. 22.
    Shao Z, Xiong G, Tong J, Dong H, Yang W (2001) Sep Purif Technol 25:419–429CrossRefGoogle Scholar
  23. 23.
    Li S, Lu Z, Huang X, Su W (2008) Solid State Ionics 178:1853–1858CrossRefGoogle Scholar
  24. 24.
    Shannon RD (1976) Acta Crystallogr 32:751CrossRefGoogle Scholar
  25. 25.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259CrossRefGoogle Scholar
  26. 26.
    Yang Z, Harvey AS, Infortuna A, Schoonman J, Gauckler LJ (2011) J Solid State Electrochem 15:277–284CrossRefGoogle Scholar
  27. 27.
    Chen Z, Ran R, Zhou W, Shao Z, Liu S (2007) Electrochim Acta 52(25):7343CrossRefGoogle Scholar
  28. 28.
    Lee S, Lim Y, Lee EA, Hwang HJ, Moon JW (2006) J Power Sources 157:848CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Center for Ceramic ProcessingInternational Advanced Research Centre for Powder Metallurgy and New MaterialsHyderabadIndia

Personalised recommendations