, Volume 18, Issue 6, pp 583–590 | Cite as

Structural characteristics of olivine Li(Mg0.5Ni0.5)PO4 via TEM analysis

  • Manickam MinakshiEmail author
  • Pritam Singh
  • David Ralph
  • Dominique Appadoo
  • Mark Blackford
  • Mihail Ionescu
Original Paper


The structural characteristics of olivine-type lithium orthophosphate Li(Mg0.5Ni0.5)PO4 synthesized via solid-state reaction have been studied using X-ray diffraction, ion beam technique, scanning electron microscopy, infrared spectroscopy, transmission electron microscopy and energy dispersive X-ray analysis. The parent LiNiPO4 compound can be synthesized in olivine structure without any evidence of secondary phases as impurities. The structural quality of the parent LiNiPO4 in the absence of secondary component phases resulted in the formation of hexagonal closed packed structure. The olivine analogue compound containing mixed M (M = Mg, Ni) cations, Li(Mg0.5Ni0.5)PO4 contained Li3PO4 as a second phase upon synthesis, however a carbothermal reduction method produced a single-phase compound. The redox behaviour of carbon-coated Li(Mg0.5Ni0.5)PO4 cathode in aqueous lithium hydroxide as the electrolyte showed reversible lithium intercalation.


Olivine Synthesis Aqueous Carbothermal Sucrose 



This research was supported under ARC’s Discovery Projects funding scheme (DP1092543). M.M. would like to thank the Australian Institute of Nuclear Science and Engineering for providing the financial assistance (Award 11133) for access to ion beam, TEM and EDS analyses at ANSTO. The infrared analysis was undertaken in the FRIR beamline at the Australian Synchrotron, VIC, Australia through the grant no. 4065.


  1. 1.
    Rahner D, Machill S, SchlÖrb H, Siury K, Kloβ M, Plieth W (1996) Solid State Ionics 86:891CrossRefGoogle Scholar
  2. 2.
    Yazami R, Touzain Ph (1983) J Power Sourc 9:365CrossRefGoogle Scholar
  3. 3.
    Whittingham MS, Chen R, Chirayil T, Zavalij P (1997) Solid State Ionics 94:227CrossRefGoogle Scholar
  4. 4.
    Mitzushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783CrossRefGoogle Scholar
  5. 5.
    Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461CrossRefGoogle Scholar
  6. 6.
    Delacourt C, Wurm C, Laffont L, Leriche JB, Masquelier C (2006) Solid State Ionics 177:333CrossRefGoogle Scholar
  7. 7.
    Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224CrossRefGoogle Scholar
  8. 8.
    Padhi AK, Nanjundaswamy, Goodenough JB (1997) J Electrochem Soc 144:A1188CrossRefGoogle Scholar
  9. 9.
    Huang H, Yin SC, Nazar LF (2002) Electrochem Solid State Lett 4:A170CrossRefGoogle Scholar
  10. 10.
    Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) Chem Mater 16:93CrossRefGoogle Scholar
  11. 11.
    Xiang H, Zhang D, Jin Y, Chen C, Wu J, Wang H (2011) J Mater Sci 46:4906. doi: 10.1007/s10853-011-5403-1 CrossRefGoogle Scholar
  12. 12.
    Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma H, Liu KY, Nishi Y (2003) J Power Sourc 119–121:232CrossRefGoogle Scholar
  13. 13.
    Minakshi M (2010) Electrochim Acta 55:9174CrossRefGoogle Scholar
  14. 14.
    Minakshi M, Pandey A, Blackford M, Ionescu M (2010) Energy Fuel 24:6193CrossRefGoogle Scholar
  15. 15.
    Minakshi M, Singh P, Sharma N, Blackford M, Ionescu M (2011) Ind Eng Chem Res 50:1899CrossRefGoogle Scholar
  16. 16.
    Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178CrossRefGoogle Scholar
  17. 17.
    Wofenstine J, Allen J (2005) J Power Sourc 142:389CrossRefGoogle Scholar
  18. 18.
    Abrahams I, Easson KS (1993) Acta Cryst C49:925Google Scholar
  19. 19.
    Minakshi M, Singh P, Appadoo D, Martin D (2011) Electrochim Acta 56:4356CrossRefGoogle Scholar
  20. 20.
    Ellis B, Herle PS, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Faraday Trans 134:119Google Scholar
  21. 21.
    Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid State Lett 6:A53CrossRefGoogle Scholar
  22. 22.
    Liu H, Zhang P, Li GC, Wu Q, Wu YP (2008) J Solid State Electrochem 12:1011CrossRefGoogle Scholar
  23. 23.
    Evans JW, Dejonghe LC (1991) The productions of inorganic materials. Macmillan, New YorkGoogle Scholar
  24. 24.
    Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y (2011) Mater Lett 65:1323CrossRefGoogle Scholar
  25. 25.
    Kaus NH, Ahmad AH (2009) Ionics 15:197CrossRefGoogle Scholar
  26. 26.
    Ahmad AH, Yahya MZA, Putech R, Arof AK (2004) Indonesian J Phys 15:65Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Manickam Minakshi
    • 1
    Email author
  • Pritam Singh
    • 1
  • David Ralph
    • 1
  • Dominique Appadoo
    • 2
  • Mark Blackford
    • 3
  • Mihail Ionescu
    • 4
  1. 1.Faculty of Minerals and EnergyMurdoch UniversityPerthAustralia
  2. 2.Australian Synchrotron Company Ltd.ClaytonAustralia
  3. 3.Institute of Materials EngineeringANSTOLucas HeightsAustralia
  4. 4.Environmental ScienceANSTOLucas HeightsAustralia

Personalised recommendations