, Volume 18, Issue 5, pp 479–486 | Cite as

Preparation of Y2Ti2O7 pyrochlore using high-energy ball milling and their structural, thermal and conducting properties

  • Meenu Singh
  • Jasmeet Kaur Gill
  • Suresh Kumar
  • K. Singh
Original Paper


Pyrochlore-structured materials are very important materials due to their structural and conducting properties. These properties can be further modified by changing processing conditions. In the present study, pyrochlore (Y2Ti2O7) is synthesized using high-energy ball milling. During various stages of ball milling, the ball-milled powder is taken for investigating the structural and thermal properties. The replacement of Ti2O3 by TiO2 in nominal composition leads to lower ball milling duration to form Y2Ti2O7. Differential thermal analysis showed the single exothermic peak below 800 °C, which indicates formation of disordered pyrochlore phase. The as prepared powders (40-h ball milled) were compacted and heat treated at 1,450 °C for 12 h. The conductivity of sintered sample is found to be one order higher than earlier reported pure Y2Ti2O7 pyrochlore.


Disordered pyrochlore Ball milling AC conductivity X-ray diffraction 



The authors are very grateful to the University Grants Commission (UGC), New Delhi, India to provide the financial grant under vide letter no. 34-1(Pun) SR dated 30/12/2008.


  1. 1.
    Subramanium MA, Aravamudan G, Subba Rao GV (1983) Prog Solid State Chem 15:55–143CrossRefGoogle Scholar
  2. 2.
    Porat O, Heremans C, Tuller HL (1996) Solid State Ion 94:75–83CrossRefGoogle Scholar
  3. 3.
    Norby T (2001) J Mater Chem 11:11–18CrossRefGoogle Scholar
  4. 4.
    Shi FW, Meng XJ, Wang GS, Lin T, Ma JH, Li YW, Chu JH (2005) Phys B Condens Matt 370:277–388CrossRefGoogle Scholar
  5. 5.
    Park JK, Kim CH, Choi KJ (2001) J Mater Res 16:2568–2571CrossRefGoogle Scholar
  6. 6.
    Goodenough JB, Castellano RN (1982) J Solid State Chem 44:108–112CrossRefGoogle Scholar
  7. 7.
    Rao PP, Liji SJ, Nair KR, Koshy P (2004) Mater Lett 58:1924–1927CrossRefGoogle Scholar
  8. 8.
    Aleshin E, Roy R (1962) J Am Ceram Soc 45:18–25CrossRefGoogle Scholar
  9. 9.
    Milanova MM, Kakihana M, Arima M, Yashima M, Yushimura M (1996) J Alloys Compd 242:6–10CrossRefGoogle Scholar
  10. 10.
    Mandal BP, Garg N, Sharma SM, Tyagi AK (2006) J Solid State Chem 179:1990–1994CrossRefGoogle Scholar
  11. 11.
    Chen Z, Gong W, Chen T, Xiong G, Huang G (2010) J Adv Mat Res 97:2175–2179CrossRefGoogle Scholar
  12. 12.
    Kakihana M, Arima M, Milanova MM, Okubo T, Yashima M, Yashimura M (1996) J Am Cerman Soc 79:1673–1676CrossRefGoogle Scholar
  13. 13.
    Fuents AF, Boulahya K, Maczka M, Hanuza J, Amador U (2005) Solid State Science 7:343–353CrossRefGoogle Scholar
  14. 14.
    Moreno KJ, Guevara-Liceaga MA, Fuents AF, Garcia-Barriocanal J, Leon C, Santhamaria J (2006) J Solid State Chem 179:928CrossRefGoogle Scholar
  15. 15.
    Bahadur D, Singh K, Roy M (1992) Mat Sci Engg A154:79–84CrossRefGoogle Scholar
  16. 16.
    Culty BD (1977) Elements of X-ray diffractions. Addison-Wesley, Reading, MA, p 284Google Scholar
  17. 17.
    Mori M, Tompsett GM, Sammes NM, Takeda ESY (2003) Solid State Ion 158:79–90CrossRefGoogle Scholar
  18. 18.
    Heremans C, Wuensch BJ, Stalick JK, Prince E (1995) J Solid State Chem 117:108–121CrossRefGoogle Scholar
  19. 19.
    Shannon RD (1976) Acta Cryst A32:751–767Google Scholar
  20. 20.
    Gupta HC, Brown S, Rani N, Gohel VB (2001) Int J Inorg Mater 3:983–986CrossRefGoogle Scholar
  21. 21.
    Alonso JA, Mzayek E, Rasines I, Ventanilla M (1987) Inorg Chem Acta 140:145CrossRefGoogle Scholar
  22. 22.
    Zhang TT, Li KW, Zeng J, Wang YL, Song XM, Wang H, Phys J (2008) Chem Solids 69:2845–2851CrossRefGoogle Scholar
  23. 23.
    Cheng P, Qiu J, Gu M, Shangguan W (2004) Mater Lett 58:3751CrossRefGoogle Scholar
  24. 24.
    Fu Z, Liu P, Chen X, Ma J, Zhang H (2010) J Alloys Compd 493:441–444CrossRefGoogle Scholar
  25. 25.
    Roy M, Singh K, Bahadur D (1992) J Mat Sci Lett 11:858–861CrossRefGoogle Scholar
  26. 26.
    Ananta S, Brydson R, Thomas NW (1999) J Eur Ceram Soc 19:355–362CrossRefGoogle Scholar
  27. 27.
    Gill JK, Pandey OP, Singh K (2011) Int J Hydro Eng (in press)Google Scholar
  28. 28.
    Vematsu K, Shinozaki JK, Sakurai O, Mizutani N, Kota M (1979) J Am Ceram Soc 62:78Google Scholar
  29. 29.
    Yamaguchi S, Kobayashi K, Abe K, Yamazaki S, Iguchi Y (1998) Solid State Ion 113–115:393–402CrossRefGoogle Scholar
  30. 30.
    Sabri MGM, Aznai BZ, Rizwan Z, Halimah MK, Hashim M, Zaid MHM (2011) Int J Phys Sci 6:1388–1394Google Scholar
  31. 31.
    Kramer SA, Tuller HL (1995) Ionics 82:15–23CrossRefGoogle Scholar
  32. 32.
    Tuller HL (1992) Solid State Ion 52:135–146CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Meenu Singh
    • 1
  • Jasmeet Kaur Gill
    • 1
  • Suresh Kumar
    • 1
  • K. Singh
    • 1
  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations