Advertisement

Ionics

, Volume 17, Issue 9, pp 785–798 | Cite as

Kinetic investigations and product analysis for optimizing platinum loading in direct ethanol fuel cell (DEFC) electrodes

  • Susmita Singh
  • Jayati Datta
Original Paper

Abstract

In this investigation, attempt has been taken to optimize Pt loading in chemically synthesized carbon-supported Pt catalyst for ethanol electro-oxidation. Surface morphology and structural characteristics showed that the catalyst matrix of 40% Pt/C is formed with homogeneously distributed and reduced particle size compared with the other catalysts. The electrochemical techniques were employed to investigate on the kinetics and mechanism of ethanol electro-oxidation at room temperature. The reaction intermediates formed during the electro-oxidation of ethanol was estimated by ion chromatography and the highest yield of acetate on 40% Pt/C substantiates the catalytic superiority of this electrode over the others. Finally, the catalytic performance of this electrode was compared with an electrodeposited electrode with much higher content of Pt, and it was summarized that the chemical method of deposition is much more effective than electroplating exhibiting high electrocatalytic activity towards ethanol oxidation.

Keywords Nanoparticles Ethanol electro-oxidation Cyclic voltammetry Impedance spectroscopy Ion chromatography 

Notes

Acknowledgments

The authors graciously acknowledge the financial support by the Department of Science and Technology (DST), New Delhi, India for the WOS-A scheme, offered to Susmita Singh. The authors would also like to appreciate the technical support on instrumental facilities given by the Ministry of Human Resource and development (MHRD), Govt. of India.

References

  1. 1.
    Lamy C, Lima A, Lerhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105:283CrossRefGoogle Scholar
  2. 2.
    Guo JW, Zhao TS, Prabhuram J, Wong CW (2005) Electrochim Acta 50:1973CrossRefGoogle Scholar
  3. 3.
    Umeda M, Kokubo M, Mohamedi M, Uchida I (2003) Electrochim Acta 48:1367CrossRefGoogle Scholar
  4. 4.
    Sen Gupta S, Bandyopadhya NR, Datta J (2006) Mater Manuf Processes 21:703CrossRefGoogle Scholar
  5. 5.
    Golabi SM, Nozad A (2002) J Electroanal Chem 521:161CrossRefGoogle Scholar
  6. 6.
    Pinheiro ALN, Oliveira Neto A, de Souza EC, Perez J, Paganin VA, Ticianelli EA, Gonzalez ER (2003) J New Mater Electrochem Syst 6:1Google Scholar
  7. 7.
    Camara GA, de Lima RB, Iwasita T (2004) Electrochem Commun 6:812CrossRefGoogle Scholar
  8. 8.
    Sun S, Halseid MC, Heinen M, Jusys Z, Behm RJ (2009) J Power Sources 190:2CrossRefGoogle Scholar
  9. 9.
    Wang H, Jusys Z, Behm RJ (2004) J Phys Chem B 108:19413CrossRefGoogle Scholar
  10. 10.
    Heinen M, Jusys Z, Behm RJ (2010) J Phys Chem C 114:9850CrossRefGoogle Scholar
  11. 11.
    Iwasita T, Rasch B, Cattaneo E, Vielstich W (1989) Electrochim Acta 34:1073CrossRefGoogle Scholar
  12. 12.
    Xia XH, Liess HD, Iwasita T (1997) J Electroanal Chem 437:233CrossRefGoogle Scholar
  13. 13.
    Camara GA, Iwasita T (2005) J Electroanal Chem 578:315CrossRefGoogle Scholar
  14. 14.
    Iwasita T (2002) 3rd LAMNET Workshop, Brazil, Workshop Proceedings, 2–4 December 2002Google Scholar
  15. 15.
    Iwasita T (2002) J Braz Chem Soc 13:401CrossRefGoogle Scholar
  16. 16.
    Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) J Electroanal Chem 563:81CrossRefGoogle Scholar
  17. 17.
    de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) J Phys Chem B 106:9825CrossRefGoogle Scholar
  18. 18.
    Hitmi H, Belgsir EM, Leger JM, Lamy C, Lenza RO (1994) Electrochim Acta 39:407CrossRefGoogle Scholar
  19. 19.
    Lee AF, Gawthrope DE, Hart NJ, Wilson K (2004) Surf Sci 548:200CrossRefGoogle Scholar
  20. 20.
    Willsau J, Heitbaum J (1985) J Electroanal Chem 194:27CrossRefGoogle Scholar
  21. 21.
    Iwasita T, Pastor E (1994) Electrochim Acta 39:531CrossRefGoogle Scholar
  22. 22.
    Shao MH, Adzic RR (2005) Electrochim Acta 50:2415CrossRefGoogle Scholar
  23. 23.
    Ye S, Vij AK, Dao LHJ (1996) J Electrochem Soc 143:L7CrossRefGoogle Scholar
  24. 24.
    Sheppard SA, Campbell SA, Smith JR, Lloyd GW, Ralph TR, Walsh FC (1998) Analyst 123:1923CrossRefGoogle Scholar
  25. 25.
    Cunningham N, Irisson E, Lafevre M, Denis MC, Guay D, Dodelet JP (2003) Electrochem Solid State Lett 6:A125CrossRefGoogle Scholar
  26. 26.
    Gamez A, Richard D, Gallezot P, Gloaguen F, Faure R, Durand R (1996) Electrochim Acta 41:307CrossRefGoogle Scholar
  27. 27.
    Delime F, Leger JM, Lamy C (1998) J Appl Electrochem 28:27CrossRefGoogle Scholar
  28. 28.
    Rodriguez JMD, Melian JAH, Pena JP (2000) J Chem Educ 9:1195CrossRefGoogle Scholar
  29. 29.
    Xing Y (2004) J Phys Chem B 108:19255CrossRefGoogle Scholar
  30. 30.
    Larminie J, Dicks A (2000) Fuel Cell Systems Explained. Wiley, NewYorkGoogle Scholar
  31. 31.
    Nart FC, Vielstich W (2003) Handbook of fuel cells, vol. 2. Wiley, New York, p 302Google Scholar
  32. 32.
    Freemantle M (1996) Chem Eng News 74:62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of ChemistryBengal Engineering and Science UniversityHowrahIndia

Personalised recommendations