, Volume 17, Issue 5, pp 407–414 | Cite as

Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries

  • N. Angulakshmi
  • Sabu Thomas
  • K. S. Nahm
  • A. Manuel Stephan
  • R. Nimma Elizabeth
Original Paper


Nanocomposite polymer electrolytes (NCPE) composed of poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) and chitin for different concentrations of LiClO4 have been prepared by a hot-press technique. The prepared NCPE films were subjected to XRD, SEM, FTIR and tensile analyses. The thermal stability of NCPE membrane was investigated by TG-DTA. Ionic conductivity studies have also been made as a function of lithium salt concentration for different temperatures ranging from 0 to 80 °C. The polymeric membrane comprising PVDF-HFP/chitin/LiClO4 of ratio 75:20:5 (wt.%) offered maximum ionic conductivity. Thermal study reveals that these membranes are stable up to 260 °C.


Batteries Electrochemical characterizations Polymer electrolyte Nanocomposite electrolytes XRD Mechanical properties Thermal stability Ionic conductivity 


  1. 1.
    Gray FM (1997) Polymer electrolytes, RSC materials monographs. The Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42CrossRefGoogle Scholar
  3. 3.
    McCallum JR, Vincent CA (1987) Polymer electrolytes reviews—I. Elsevier, LondonGoogle Scholar
  4. 4.
    Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRefGoogle Scholar
  5. 5.
    Gray FM (1991) Solid polymer electrolytes-fundamentals and technological applications. VCH, New YorkGoogle Scholar
  6. 6.
    Scrosati B (1993) Applications of electroactive polymers. Chapman Hall, LondonGoogle Scholar
  7. 7.
    Armand MB, Chabagno JM, Duclot M (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier, Amsterdam, p 131Google Scholar
  8. 8.
    Gorecki W, Andreani R, Bertheir C, Malli M, Roose J (1986) NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte:PEO(LiClO4)x. Solid State Ionics 18–19:295–299CrossRefGoogle Scholar
  9. 9.
    Kelly IE, Owen JR, Steele BCH (1985) Poly(ethylene oxide) electrolytes for operation at near room temperature. J Power Sources 14:13–21CrossRefGoogle Scholar
  10. 10.
    Moulin JF, Damman P, Dosiere M (1999) Formation and structure of the epoxy-silica hybrids. Polymer 40:171–181CrossRefGoogle Scholar
  11. 11.
    Gray FM, McCollum JR, Vincent CA (1986) Poly(ethylene oxide)-LiCF3SO3-polystyrene electrolyte systems. Solid State Ionics 18–19:282–286CrossRefGoogle Scholar
  12. 12.
    Weston JE, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 7:75–79CrossRefGoogle Scholar
  13. 13.
    Bronstein LM, Karlinsey RL, Ritter K, Joo CG, Stein B, Zw JW (2004) Design of organic-inorganic solid polymer electrolytes: synthesis, structure and properties. J Mater Chem 14:1812–1820CrossRefGoogle Scholar
  14. 14.
    Croce F, Appetecchi GB, Perci L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRefGoogle Scholar
  15. 15.
    Appetecchi GB, Croce F, Perci L, Ronci F, Scrosati B (2000) Investigation on the stability of the lithium-polymer electrolyte interface. J Electrochem Soc 147:4448–4452CrossRefGoogle Scholar
  16. 16.
    Itoh T, Miyamura Y, Iohikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranced polymer. J Power Sources 119–121:403–408CrossRefGoogle Scholar
  17. 17.
    Wieczorek W (1992) Temperature dependence of conductivity of mixed-phase composite polymer solid electrolytes. Mater Sci Eng B 15:108–114CrossRefGoogle Scholar
  18. 18.
    Skaarup S, West K, Christiansen BZ (1980) Mixed phase solid electrolytes. Solid State Ionics 28–30:375–380Google Scholar
  19. 19.
    Capuoano F, Croce F, Scrosati B (1991) Composite polymer electrolytes. J Electrochem Soc 138:1918–1922CrossRefGoogle Scholar
  20. 20.
    Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52:261–268CrossRefGoogle Scholar
  21. 21.
    Song JY, Wang H (1999) Review on gel electrolytes. J Power Sources 77:135–146CrossRefGoogle Scholar
  22. 22.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  23. 23.
    Shin JH, Alessandrini F, Passerini S (2005) Comparison of solvent-cast and hot-pressed P (EO) 20 LiN (SO2CF2CF3)2 polymer electrolytes containg nanosized SiO2. J Electrochem Soc 152:A283–A288CrossRefGoogle Scholar
  24. 24.
    Appetecchi GB, Hassoun J, Scrosati B, Croce F, Cassel F, Salomon M (2003) Hot-pressed, solvent free, nanocomposite, PEO-based electrolyte membranes: II All solid state Li/LiFePO4 polymer batteries. J Power Sources 124:246–253CrossRefGoogle Scholar
  25. 25.
    Abbernt S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42:1407–1416CrossRefGoogle Scholar
  26. 26.
    Saikia D, Kumar A (2004) Ionic conduction in P(VdF-HFP)/PVdF-(PC + DEC)-LiClO4 polymer electrolytes. Electrochim Acta 49:2581–2589CrossRefGoogle Scholar
  27. 27.
    Wieczorek W, Steven JR, Florjanczyk Z (1996) Composite polyether based electrolytes. The Lewis acid-base approach. Solid State Ionics 85:67–72CrossRefGoogle Scholar
  28. 28.
    Stephan AM, Kumar TP, Nathan MAK, Angulakshmi N (2009) Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. J Phys Chem B 113(7):1963–1971CrossRefGoogle Scholar
  29. 29.
    Shodai T, Owens BB, Ostsuka M, Yamaki J (1994) Thermal stability of the polymer electrolyte (PEO)8-LiCF3SO3. J Electrochem Soc 141:2978–2981CrossRefGoogle Scholar
  30. 30.
    Ribeiro R, Silva GG, Mohallen NDS (2001) A comparison of ionic conductivity, thermal behaviour and morphology in two polyether-LiI-LiAl5O8 composite polymer electrolytes. Electrochim Acta 46:1679–1686CrossRefGoogle Scholar
  31. 31.
    Fan LZ, Maier J (2006) Composite effects in poly(ethylene oxide)-succinonitrile based all-solid electrolytes. Electrochem Commun 8:1753–1756CrossRefGoogle Scholar
  32. 32.
    Chu PP, Reddy MJ, Kao HM (2003) Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ionics 156:141–153CrossRefGoogle Scholar
  33. 33.
    Chiang CY, Chu PP, Reddy MJ (2004) Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics 175:631–635CrossRefGoogle Scholar
  34. 34.
    Robitailla CD, Fauteeaux D (1986) Phase diagrams and conductivity characterization of some PEO-LiX Electrolytes. J Electrochem Soc 133:315–325CrossRefGoogle Scholar
  35. 35.
    Capuglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79CrossRefGoogle Scholar
  36. 36.
    Scrosati B, Croce F, Perci L, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461CrossRefGoogle Scholar
  37. 37.
    Rajendran S, Mahendran O, Kannan R (2002) Lithium-ion conduction in plasticized PMMA-PVdF polymer blend electrolytes. Mater Chem Phys 74:52–57CrossRefGoogle Scholar
  38. 38.
    Pearson FG, Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides. V. Chitin. J Polym Sci 43:101–116CrossRefGoogle Scholar
  39. 39.
    Focher B, Naggi A, Torri G, Cosari A, Terbjerich M (1992) Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-Mas, 13C-NMR, FTIR and FT-Raman spectroscopy. Carbohydr Polym 17:97–102CrossRefGoogle Scholar
  40. 40.
    Huang B, Wang Z, Chen L, Zue R, Wang F (1996) The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91:279–284CrossRefGoogle Scholar
  41. 41.
    Chusid O, Gofer O, Aurbach D, Wattanable D, Momma M, Osaka T (2001) Studies of the interface between lithium electrodes and polymeric electrolyte systems using in situ FTIR spectroscopy. J Power Sources 97–98:632–636CrossRefGoogle Scholar
  42. 42.
    Schechter A, Aurbach D (1999) X-ray photoelectron spectroscopy study of surface films formed on Li-electrodes freshly prepared in alkyl carbonate solution. Langmuir 15:3334–3342CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • N. Angulakshmi
    • 1
  • Sabu Thomas
    • 2
  • K. S. Nahm
    • 3
  • A. Manuel Stephan
    • 4
  • R. Nimma Elizabeth
    • 1
  1. 1.Department of PhysicsLady Doak CollegeMaduraiIndia
  2. 2.School of ChemistryMahatma Gandhi UniversityKottayamIndia
  3. 3.School of Chemical Engineering and TechnologyChonbuk National UniversityChonjuSouth Korea
  4. 4.Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations