Advertisement

Ionics

, Volume 16, Issue 3, pp 277–282 | Cite as

Structural, thermal and transport properties of \( {\text{B}}{{\text{i}}_4}{{\text{V}}_{2 - {\text{x}}}}{\text{G}}{{\text{a}}_{\text{x}}}{{\text{O}}_{11 - \delta }} \) (0 ≤ x ≤ 0.4)

  • Ravi Kant
  • Kulvir Singh
  • O. P. Pandey
Original Paper

Abstract

Solid electrolytes are mostly used in solid oxide fuel cells (SOFC). In the present study, gallium-substituted compounds (\( {\text{B}}{{\text{i}}_4}{{\text{V}}_{2 - {\text{x}}}}{\text{M}}{{\text{e}}_{\text{x}}}{{\text{O}}_{11 - \delta }} \); Me = Ga3+; 0≤x≤0.4) were prepared by solid-state reaction technique for its use as an electrolyte in SOFC. Structural and conductivity behavior was studied as a function of the Ga3+ substitution on vanadium site. The compounds remain in the orthorhombic α-phase for x = 0 and 0.1 whereas higher concentration of dopant leads to β-phase stabilization. The highest and lowest ionic conductivity were observed in x = 0.2 and x = 0.4 samples, respectively. The prepared samples were studied by using alternating current conductivity, differential thermal analysis and X-ray diffraction techniques. The results are discussed on the basis of formation of oxygen vacancy and its ordering.

Keywords

Bismuth vanadate Solid electrolyte X-ray diffraction Ionic conductivity 

Notes

Acknowledgment

All India Council of Technical Education, New Delhi (India) is highly acknowledged for providing financial help.

References

  1. 1.
    Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The BIMEVOX series: a new family of high performances oxide ion conductors. Solid State Ion 40–41(part 2):934–937CrossRefGoogle Scholar
  2. 2.
    Abraham F, Debreuille-Gresse MF, Mairesse G, Nowogrocki G (1988) Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ion 28–30:529–532CrossRefGoogle Scholar
  3. 3.
    Mairesse G, Roussel P, Vannier RN, Anne M, Pirovano C, Nowogrocki G (2003) Crystal structure determination of α-, β-, and γ-Bi4V2O11 polymorphs. Part II: crystal structure of α-Bi4V2O11. Solid State Sci 5:861–869CrossRefGoogle Scholar
  4. 4.
    Mairesse G, Roussel P, Vannier RN, Anne M, Pirovano C, Nowogrocki G (2003) Crystal structure determination of α, β and γ-Bi4V2O11 polymorphs. Part I: γ and β-Bi4V2O11. Solid State Sci 5:851–859CrossRefGoogle Scholar
  5. 5.
    Abraham I, Krok F (2003) A model for the mechanism of low temperature ionic conduction in divalent-substituted γ-BIMEVOXes. Solid State Ion 157:139–145CrossRefGoogle Scholar
  6. 6.
    Vannier RN, Mairesse G, Abraham F, Nowogrocki G, Pernot E, Anne M, Bacmann M, Strobel P, Fouletier J (1995) Thermal behaviour of Bi4V2O11: X-ray diffraction and impedance spectroscopy studies. Solid State Ion 78:183–189CrossRefGoogle Scholar
  7. 7.
    Krok F, Abraham I, Bangobango DG, Bogusz W, Nelstrop JAG (1996) Electrical and structural study of BICOVOX. Solid State Ion 86–88:261–266CrossRefGoogle Scholar
  8. 8.
    Goodenough JB, Manthiram A, Paranthaman M, Zhen YS (1992) Oxide ion electrolytes. Mater Sci Eng B12:357–364CrossRefGoogle Scholar
  9. 9.
    Yan J, Greenblatt M (1995) Ionic conductivities of Bi4V2−xMxO11−x/2 (M = Ti, Zr, Sn, Pb) solid solutions. Solid State Ion 81(3–4):225–233CrossRefGoogle Scholar
  10. 10.
    Kant R, Singh K, Pandey OP (2009) Ionic conductivity and structural properties of MnO doped Bi4V2O11 system. Int J Ion 15(5):567Google Scholar
  11. 11.
    Joubert O, Jouanneaux A, Ganne M (1994) Crystal structure of low-temperature form of bismuth vanadium oxide determined by rietveld refinement of X-ray and neutron diffraction data (α-Bi4V2O11). Mater Res Bull 29:175–184CrossRefGoogle Scholar
  12. 12.
    Huve M, Vannier R, Nowogrocki G, Mairesse G, Tendello GV (1996) From Bi4V2O11 to Bi4V2O10.66: the VV–VIV transformation in the Aurivillius-type framework. J Mater Chem 6:1339–1345CrossRefGoogle Scholar
  13. 13.
    Vannier RN, Mairesse G, Abraham F, Nowogrocki G (1995) W-substituted Bi4V2O11. Solid State Ion 80:11–17CrossRefGoogle Scholar
  14. 14.
    Vannier RN, Mairesse G, Abraham F, Nowogrocki G (1993) Incommensurate superlattice in Mo-substituted Bi4V2O11. J Solid State Chem 103:441–446CrossRefGoogle Scholar
  15. 15.
    Krok F, Abraham I, Malys M, Bogusz W, Dygas JR, Nelstrop JAG, Bush AJ (2000) Structural and electrical consequences of high dopant levels in the BIMGVOX system. Solid State Ion 136–137:119–125CrossRefGoogle Scholar
  16. 16.
    Abraham I, Krok F, Malys M, Wrobel W (2005) Phase transition studies in BIMEVOX solid electrolytes using AC impedance spectroscopy. Solid State Ion 176:2053–2058CrossRefGoogle Scholar
  17. 17.
    Lee CK, Bay BH, West AR (1996) New oxide ion conducting solid electrolytes, Bi4V2O11:M;M = B, Al, Cr, Y. La J Mater Chem 6(3):331–335CrossRefGoogle Scholar
  18. 18.
    Lee CK, Tan MP, West AR (1994) Ge-doped bismuth vanadatesolid electrolytes: synthesis, phase diagram and electrical properties. J Mater Chem 4(4):525–528CrossRefGoogle Scholar
  19. 19.
    Lee CK, Sinclair DC, West AR (1993) Stoichiometry and stability of bismuth vanadate, Bi4V2O11, solid solutions. Solid State Ion 62:193–198CrossRefGoogle Scholar
  20. 20.
    Yi L, Lao LE (2006) Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia. Solid State Ion 177:159–163CrossRefGoogle Scholar
  21. 21.
    Wrobel W, Abrahams I, Krok F, Kozanecka A, Malys M, Bogusz W, Dygas JR (2004) Phase stabilization and electrical characterization in the pseudo-binary system \( {\text{B}}{{\text{i}}_2}{\text{Zr}}{{\text{O}}_5} - {\text{B}}{{\text{i}}_2}{\text{V}}{{\text{O}}_{5.5 - \delta }} \). Solid State Ion 175:425–429CrossRefGoogle Scholar
  22. 22.
    Kant R, Singh K, Pandey OP (2008) Synthesis and characterization of bismuth vanadate electrolyte material with aluminium doping for sofc application. Int J Hydrogen Energy 33:455–462CrossRefGoogle Scholar
  23. 23.
    Kant R, Singh K, Pandey OP (2009) Microstructural and Electrical behavior of \( {\text{B}}{{\text{i}}_4}{{\text{V}}_{2 - {\text{x}}}}{\text{C}}{{\text{u}}_{\text{x}}}{{\text{O}}_{11 - }}_\delta \) (0 ≤ x ≤ 0.4). Ceram Int 35:221–227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Thapar UniversityPatialaIndia

Personalised recommendations