, 15:779

A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery



LiMn2O4 (LMO) is a very attractive choice as cathode material for power lithium-ion batteries due to its economical and environmental advantages. However, LiMn2O4 in the 4-V region suffers from a poor cycling behavior. Recent research results confirm that modification by coating is an important method to achieve improved electrochemical performance of LMO, and the latest progress was reviewed in the paper. The surface treatment of LMO by coating oxides and nonoxide systems could decrease the surface area to retard the side reactions between the electrode and electrolyte and to further diminish the Mn dissolution during cycling test. At present, LiMn2O4 is the mainstreaming cathode material of power lithium-ion battery, and, especially the modified LMO, is the trend of development of power lithium-ion battery cathode material in the long term.


Power lithium-ion battery Cathode material LiMn2O4 Surface modification 


  1. 1.
    Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Goodenough JB (1984) Mater Res Bull 19:179CrossRefGoogle Scholar
  2. 2.
    Amatucci GG, Schmutz CN, Blyr A, Sigala C, Gozdz AS, Larcher D, Tarascon JM (1997) J Power Sources 69:11CrossRefGoogle Scholar
  3. 3.
    Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) J Power Sources 127:58CrossRefGoogle Scholar
  4. 4.
    Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593CrossRefGoogle Scholar
  5. 5.
    Xia Y, Zhang Q, Wang H, Nakamura H, Noguchi H, Yoshio M (2007) Electrochim Acta 52:4708CrossRefGoogle Scholar
  6. 6.
    Jeong I-S, Kim J-U, Gu H-B (2001) J Power Sources 102:55CrossRefGoogle Scholar
  7. 7.
    Sun Y-K, Hong K-J, Prakash J, Amine K (2002) Electrochem Commun 4:344CrossRefGoogle Scholar
  8. 8.
    Ein-Eli Y, Vaughey JT, Thackeray MM, Mukerjee S, Yang XQ, McBreen J (1999) J Electrochem Soc 146:908CrossRefGoogle Scholar
  9. 9.
    Molenda J, Marzec J, Świerczek K, Pałubiak D, Ojczyk W, Ziemnicki M (2004) Solid State Ionics 175:297CrossRefGoogle Scholar
  10. 10.
    Yi TF, Hu XG, Huo HB, Gao K (2006) Rare Metal Mat Eng 35:1350Google Scholar
  11. 11.
    Arora P, White RE, Doyle M (1998) J Electrochem Soc 145:3647CrossRefGoogle Scholar
  12. 12.
    Aubarch D, Zaban A, Schlecter A, Ein-Eli Y, Zinigrad E, Markowsky B (1995) J Electrochem Soc 142:2873CrossRefGoogle Scholar
  13. 13.
    Jang DH, Oh SM (1997) J Electrochem Soc 144:3342CrossRefGoogle Scholar
  14. 14.
    Arumugam D, Kalaignan GP (2008) J Electroanal Chem 624:197–204CrossRefGoogle Scholar
  15. 15.
    Lim S, Cho J (2008) Chem Commun 37:4472–4474CrossRefGoogle Scholar
  16. 16.
    Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Electrochem Commun 5:940–945CrossRefGoogle Scholar
  17. 17.
    Liu D, Liu X, He Z (2007) J Alloys Compd 436:387–391CrossRefGoogle Scholar
  18. 18.
    Tu J, Zhao XB, Xie J, Cao GS, Zhuang DG, Zhu TJ, Tu JP (2007) J Alloys Compd 432:313–317CrossRefGoogle Scholar
  19. 19.
    Liu H, Cheng C, Hu Z, Zhang K (2007) Mater Chem Phys 101:276–279CrossRefGoogle Scholar
  20. 20.
    Liu H, Cheng C, Hu Z, Zhang K (2005) J Mater Sci 40:5767–5769CrossRefGoogle Scholar
  21. 21.
    Ha H-W, Yun NJ, Kim K (2007) Electrochim Acta 52:3236–3241CrossRefGoogle Scholar
  22. 22.
    Lin Y-M, Wu H-C, Yen Y-C, Guo Z-Z, Yang M-H, Chen H-M, Sheu H-S, Wu N-L (2005) J Electrochem Soc 152:A1526–A1532CrossRefGoogle Scholar
  23. 23.
    Kim J-S, Johnson CS, Vaughey JT, Hackney SA, Walz KA, Zeltner WA, Anderson MA, Thackeray MM (2004) J Electrochem Soc 151:A1755–A1761CrossRefGoogle Scholar
  24. 24.
    Lee S-W, Kim K-S, Moon H-S, Kim H-J, Cho B-W, Cho W-I, Ju J-B, Park J-W (2004) J Power Sources 126:150–155CrossRefGoogle Scholar
  25. 25.
    Yang Z, Yang W, Evans DG, Zhao Y, Wei X (2009) J Power Sources 189:1147–1153CrossRefGoogle Scholar
  26. 26.
    Cho J, Kim Y-W, Kim B, Lee J-G, Park B (2003) Angew Chem Int Ed 42:1618CrossRefGoogle Scholar
  27. 27.
    Cho J, Lee J-G, Kim B, Park B (2003) Chem Mater 15:3190CrossRefGoogle Scholar
  28. 28.
    Liu DQ, He ZZ, Liu XQ (2007) Mater Lett 25:4703CrossRefGoogle Scholar
  29. 29.
    Tu J, Zhao XB, Cao GS, Tu JP, Zhu TJ (2006) Mater Lett 60:3251–3254CrossRefGoogle Scholar
  30. 30.
    Zhou W-J, He B-L, Li HL (2008) Mater Res Bull 43:2285CrossRefGoogle Scholar
  31. 31.
    Son JT, Park KS, Kim HG, Chung HT (2004) J Power Sources 126:182CrossRefGoogle Scholar
  32. 32.
    Kannan AM, Manthiram A (2002) Electrochem Solid State Lett 5:A167CrossRefGoogle Scholar
  33. 33.
    Park SC, Kim YM, Kang YM, Kim KT, Lee PS, Lee JY (2001) J Power Sources 103:86CrossRefGoogle Scholar
  34. 34.
    Park SC, Han YS, Kang YS, Lee PS, Ahn S, Lee HM, Lee JY (2001) J Electrochem Soc 148:A680CrossRefGoogle Scholar
  35. 35.
    Liu Z, Wang H, Fang L, Lee JY, Gan LM (2002) J Power Sources 104:101CrossRefGoogle Scholar
  36. 36.
    Park S-C, Kim Y-M, Han S-C, Ahn S, Ku C-H, Lee J-Y (2002) J Power Sources 107:42CrossRefGoogle Scholar
  37. 37.
    Liu D-Q, Liu X-Q, He Z-Z (2007) Mater Chem Phys 105:362–366CrossRefGoogle Scholar
  38. 38.
    Liu D-Q, Yu J, Sun Y-H, He Z-Z, Liu X-Q (2007) Chin J Inorg Chem 23:41Google Scholar
  39. 39.
    Yuan YF, Wu HM, Guo SY, Wu JB, Yang JL, Wang XL, Tu JP (2008) Appl Surf Sci 255:2225CrossRefGoogle Scholar
  40. 40.
    Chan H-W, Duh J-G, Sheu H-S (2006) J Electrochem Soc 153:A1533CrossRefGoogle Scholar
  41. 41.
    Han AR, Kim TW, Park DH, Hwang S-J, Choy J-H (2007) J Phys Chem C 111:11347Google Scholar
  42. 42.
    Patey TJ, Büchel R, Ng SH, Krumeich F, Pratsinis SE, Novák P (2009) J Power Sources 189:149CrossRefGoogle Scholar
  43. 43.
    Li JG, He XM, Zhao RS (2007) Trans Nonferrous Met Soc China (English Edition) 17:1324CrossRefGoogle Scholar
  44. 44.
    Lee K-S, Myung S-T, Amine K, Yashiro H, Sun Y-K (2009) J Mater Chem 19:1995CrossRefGoogle Scholar
  45. 45.
    Eddrief M, Dzwonkowski P, Julien C, Balkanski M (1991) Solid State Ionics 45:77CrossRefGoogle Scholar
  46. 46.
    Soppe W, Aldenkamp F, den Hartog HW (1987) J Non-Cryst Solids 91:351CrossRefGoogle Scholar
  47. 47.
    Chan H-W, Duh J-G, Sheen S-R (2004) Surf Coat Technol 188–189:116CrossRefGoogle Scholar
  48. 48.
    Şahan H, Göktepe H, Patat Ş, Ülgen A (2008) Solid State Ionics 178:1837CrossRefGoogle Scholar
  49. 49.
    Chan HW, Duh JG, Sheen SR (2006) Electrochim Acta 51:3645CrossRefGoogle Scholar
  50. 50.
    Hu G, Wang X, Chen F, Zhou J, Li R, Deng Z (2005) Electrochem Commun 7:383CrossRefGoogle Scholar
  51. 51.
    Arbizzani C, Mastragostino M, Rossi M (2002) Electrochem Commun 4:545CrossRefGoogle Scholar
  52. 52.
    Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872–3883CrossRefGoogle Scholar
  53. 53.
    Hung F-Y, Lui T-S, Liao H-C (2007) Appl Surf Sci 253:7443CrossRefGoogle Scholar
  54. 54.
    Vidu R, Stroeve P (2004) Ind Eng Chem Res 43:3314CrossRefGoogle Scholar
  55. 55.
    Sugita M, Noguchi H, Soejima Y, Yoshio M (2000) Electrochemistry 68:587Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringAnhui University of TechnologyMaanshanPeople’s Republic of China
  2. 2.Science Research Center, Academy of Fundamental and Interdisciplinary SciencesHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.College of Materials Science and Chemical EngineeringNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations