Advertisement

Ionics

, Volume 15, Issue 5, pp 567–570 | Cite as

Ionic conductivity and structural properties of MnO-doped Bi4V2O11 system

  • Ravi Kant
  • K. Singh
  • O. P. Pandey
Original Paper

Abstract

Bi4V2O11 exists in three phases viz. α, β, and γ. High temperature γ-phase can be stabilized to room temperature owing to its higher conductivity by the partial substitution of metallic cations for vanadium in Bi4V2O11. Phase transitions from α → β and β → γ are composition and temperature-dependent. Mn2+-doped compounds Bi4V2−x Mn x O11− δ (0 ≤ x ≤ 0.4) have been synthesized by solid state reaction technique and investigated by X-ray diffraction and ionic conductivity measurement. High ionic conducting γ-phase is stabilized for x ≥ 0.2. The ionic conductivity of the series of Bi4V2−x Mn x O11− δ samples has been measured by using ac impedance spectroscopy technique. The conductivity data do show departure from its simple Arrhenius behavior for all of the compositions. The highest conductivity observed for x = 0.2 sample can be attributed to lower activation energy.

Keywords

Bismuth vanadate Phase transition Ionic conductivity XRD 

Notes

Acknowledgement

All India Council of Technical Education, New Delhi (India) is highly acknowledged for providing financial help.

References

  1. 1.
    Abraham I, Krok F (2002) J Mater Chem 12:3351CrossRefGoogle Scholar
  2. 2.
    Boivin JC, Mairesse G (1998) Chem Mater 10:2870CrossRefGoogle Scholar
  3. 3.
    Marrero-López D, Peña-Martínez J, Ruiz-Morales JC, Pérez-Coll D, Martín-Sedeño MC, Núñez P (2007) Solid State Ion 178:1366–1378CrossRefGoogle Scholar
  4. 4.
    Butz B, Kruse P, Störmer H, Gerthsen D, Müller A, Weber A, Ivers-Tiffée E (2006) Solid State Ion 177:3275–3284CrossRefGoogle Scholar
  5. 5.
    Kwon OH, Choi GM (2006) Solid State Ion 177:3057–3062CrossRefGoogle Scholar
  6. 6.
    Omar S, Wachsman ED, Nino JC (2006) Solid State Ionics 177:3199–3203CrossRefGoogle Scholar
  7. 7.
    Wang JX, Wang XP, Liang FJ, Cheng ZJ, Fang QF (2006) Solid State Ionics 177:1437–1442CrossRefGoogle Scholar
  8. 8.
    Abraham I, Krok F (2003) Solid State Ionics 157:139–145CrossRefGoogle Scholar
  9. 9.
    Mairesse G, Roussel P, Vannier RN, Anne M, Pirovano C, Nowogrocki G (2003) Solid State Sci 5:861CrossRefGoogle Scholar
  10. 10.
    Mairesse G, Roussel P, Vannier RN, Anne M, Pirovano C, Nowogrocki G (2003) Solid State Sci 5:851CrossRefGoogle Scholar
  11. 11.
    Yang YL, Qin L, Harrison WTA, Christoffersen R, Jacobson AJ (1997) J Mater Chem 7:243CrossRefGoogle Scholar
  12. 12.
    Qin L, Yang YL, Jacobson AJ (1997) J Mater Chem 7:249CrossRefGoogle Scholar
  13. 13.
    Achary SN, Mathews MD, Patwe SJ, Tyagi AK (1999) J Mater Sci Lett 18:355CrossRefGoogle Scholar
  14. 14.
    Joubert O, Jouanneaux A, Ganne M (1944) Mater Res Bull 29:175CrossRefGoogle Scholar
  15. 15.
    Huve M, Vannier R, Nowogrocki G, Mairesse G, Tendello GV (1996) J Mater Chem 6:1339CrossRefGoogle Scholar
  16. 16.
    Paydar MH, Hadian AM, Fafilek G (2004) J Mater Sci 39:1357CrossRefGoogle Scholar
  17. 17.
    Dean JA (1985) Lange’s handbook of chemistry, Thirteenth Edition. McGraw-Hill, New York, pp 3–126Google Scholar
  18. 18.
    Goodenough JB, Manthiram A, Paranthaman M, Zhen YS (1992) Material Science Engineering B12:357CrossRefGoogle Scholar
  19. 19.
    Anne M, Bacmann M, Pernot E, Abraham F, Mairesse G, Strobel P (1991) Physica B 180/181:621CrossRefGoogle Scholar
  20. 20.
    Essalim R, Tanouti B, Bonnet JP, Reau JM (1992) Mater Lett 13:382CrossRefGoogle Scholar
  21. 21.
    Dygas JR, Krok F, Boogusz W, Kurek P, Reiselhuber K, Breiter MW (1994) Solid State Ionics 70/71:239–247CrossRefGoogle Scholar
  22. 22.
    Lee CK, Tan MP, West AR (1994) J Mater Chem 4:525–528CrossRefGoogle Scholar
  23. 23.
    Kant R, Singh K, Pandey OP (2007) Int J Hydrogen Energy 33:455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.GTBKIETMaloutIndia
  2. 2.Thapar UniversityPatialaIndia

Personalised recommendations