, Volume 15, Issue 2, pp 157–161 | Cite as

Electromechanical properties and defect chemistry of high-temperature piezoelectric materials

  • Michal Schulz
  • Jan Sauerwald
  • Denny Richter
  • Holger Fritze
Original Paper


Langasite and gallium phosphate are shown to exhibit piezoelectrically stimulated bulk acoustic waves up to at least 1,400 and 900 °C, respectively. Most critical issues are stoichiometry changes due to, e.g. low oxygen partial pressures, and high losses. Therefore, the paper discusses the atomistic transport and defect chemistry of those crystals and correlates them with the electromechanical properties. First, the defect chemistry of langasite is investigated. As long as the atmosphere is nearly hydrogen-free, the transport of charge carriers is governed by oxygen movement. A dominant role of hydrogen is observed in hydrogenous atmospheres. Based on the developed defect model, donors are expected to suppress the oxygen vacancy concentration and, thereby, the loss in langasite. The prediction is proven by niobium doping and found to be valid. A one-dimensional physical model of thickness shear mode resonators is summarized. The analysis of the resonance spectra showed that the loss of the resonators can be described satisfactorily by mechanical and electrical contributions expressed as effective viscosity and bulk conductivity, respectively. The mechanical loss in langasite is significantly impacted by the electrical conductivity due to the piezoelectric coupling. The effect of the piezoelectric coupling on the loss is negligible for gallium phosphate since it shows an extremely low electrical conductivity.


Langasite Gallium phosphate Piezoelectricity Gas sensors 



The financial support of the German Science Foundation (Deutsche Forschungsgemeinschaft) made this work possible. The authors thank Prof. H. L. Tuller and Dr. H. Seh from the Massachusetts Institute of Technology for a very fruitful collaboration. In addition, the authors thank Mr. E. Ebeling for mechanical machining and preparation of the samples.


  1. 1.
    Fachberger R, Bruckner G, Knoll G, Hauser R, Biniasch J, Reindl L (2004) IEEE Trans Ultrason Ferroelectr Freq Control 51:1427CrossRefGoogle Scholar
  2. 2.
    Bruckner G, Hauser R, Stelzer A, Maurer L, Reindl L, Teichmann R, Biniasch J (2003) In: IEEE int. freq. contr. symp. p 942Google Scholar
  3. 3.
    Smythe R, Helmbold RC, Hague GE, Snow KA (2000) IEEE Trans Ultrason Ferroelectr Freq Control 47:355CrossRefGoogle Scholar
  4. 4.
    Fritze H, Tuller HL (2001) J Appl Phys Lett 78:976CrossRefGoogle Scholar
  5. 5.
    Sauerwald J, Fritze H, Ansorge E, Schimpf S, Hirsch S, Schmidt B (2005) In: International workshop on integrated electroceramic functional structures. Berchtesgaden, GermanyGoogle Scholar
  6. 6.
    Jacobs K, Hofmann P, Klimm D, Reichow J, Schneider M (2000) J Solid State Chem 149:180CrossRefGoogle Scholar
  7. 7.
    Ganschow S, Cavalloni C, Reiche P, Uecker R (1995) Proc SPIE 55:2373Google Scholar
  8. 8.
    Reiter C, Krempl PW, Thanner H, Wallnöfer W, Worsch PM (2001) Ann Chim Sci Mat 26:91CrossRefGoogle Scholar
  9. 9.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Seh H, Tuller H, Fritze H (2004) J Eur Ceram Soc 24:1425CrossRefGoogle Scholar
  11. 11.
    Seh H (2004) Langasite bulk acoustic wave resonant sensor for high temperature applications. Ph.D. Thesis, MITGoogle Scholar
  12. 12.
    Seh H, Fritze H, Tuller HL (2007) J Electroceram 18:139CrossRefGoogle Scholar
  13. 13.
    Fritze H (2007) Electromechanical properties and defect chemistry of high-temperature piezoelectric materials. Habilitation thesis, Clausthal University of TechnologyGoogle Scholar
  14. 14.
    Göpel W, Hesse J, Zehmel J (1994) Sensors: a comprehensive survey, vol. 7. VCH WeinheimGoogle Scholar
  15. 15.
    Schulz M (2007) Untersuchung der eigenschaften von langasit für hochtemperaturanwendungen. Ph.D. thesis, Clausthal University of TechnologyGoogle Scholar
  16. 16.
    Schulz M, Fritze H (2008) Renew Energy 33:336CrossRefGoogle Scholar
  17. 17.
    Richter D, Fritze H, Schneider T, Hauptmann P, Bauersfeld N, Kramer KD, Wiesner K, Fleischer M, Karle G, Schubert A (2006) Sens Actuators B 118:466CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michal Schulz
    • 1
  • Jan Sauerwald
    • 1
  • Denny Richter
    • 1
  • Holger Fritze
    • 1
  1. 1.LaserApplicationCentreClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations