Ionics

, 15:183

ΔThe effect of co-doping on the yttrium local environment and ionic conductivity of yttria-stabilised zirconia

Original Paper

Abstract

The effect of co-doping yttria-stabilised zirconia with calcia and scandia has been investigated. Changes in the yttrium ion local environment have been monitored using solid-state magic angle sample spinning 89Y nuclear magnetic resonance. The effect on the low-temperature (below 320 °C) bulk ionic conductivity has been observed using AC impedance spectroscopy. It was found that the number of oxygen vacancies in the nearest-neighbour sites to yttrium ions decreased on co-doping with scandia, correlating with an increase in conductivity, but increased on co-doping with calcia, correlating with a decrease in conductivity. This behaviour can be explained by proposing the trapping of oxygen vacancies in the nearest-neighbour yttrium ion sites so that they no longer contribute to the conduction mechanism.

Keywords

Co-doping Stabilised zirconia Ordering 

References

  1. 1.
    Badwal SPS (1992) Solid State Ion 52:23CrossRefGoogle Scholar
  2. 2.
    Stubican VS, Hink RC, Ray SP (1978) J Am Ceram Soc 61:17–21CrossRefGoogle Scholar
  3. 3.
    Goff JP, Hayes W, Hull S, Hutchings MT, Clausen KN (1999) Phys Rev B 59:14202–14219CrossRefGoogle Scholar
  4. 4.
    Politova TI, Irvine JTS (2004) Solid State Ion 168:153–165CrossRefGoogle Scholar
  5. 5.
    Bucko MM (2004) J Eur Ceram Soc Electroceram VIII 24:1305–1308CrossRefGoogle Scholar
  6. 6.
    Kawata K, Maekawa H, Nemoto T, Yamamura T (2006) Solid State Ion 177:1687CrossRefGoogle Scholar
  7. 7.
    Kim N, Hsieh CH, Stebbins JF (2006) Chem Mater 18:3855–3859CrossRefGoogle Scholar
  8. 8.
    Fletcher DA, McMeeking RF, Parkin D (1996) J Chem Inf Model 36:746–749CrossRefGoogle Scholar
  9. 9.
    Hwang S-L, Chen IW (1990) J Am Ceram Soc 73:3269–3277CrossRefGoogle Scholar
  10. 10.
    Kim N, Grey CP (2004) Dalton Trans 3048–3052Google Scholar
  11. 11.
    Abelard P, Baumard JF (1995) Pure Appl Chem 67:1891–1904CrossRefGoogle Scholar
  12. 12.
    Porter DA, Easterling KE (1992) Phase transformations in metals and alloys, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  13. 13.
    Li P, Chen IW, Pennerhahn JE (1994) J Am Ceram Soc 77:118–128CrossRefGoogle Scholar
  14. 14.
    Zacate MO, Minervini L, Bradfield DJ, Grimes RW, Sickafus KE (2000) Solid State Ion 128:243–254CrossRefGoogle Scholar
  15. 15.
    Khan MS, Islam MS, Bates DR (1998) J Mater Chem 8:2299–2307CrossRefGoogle Scholar
  16. 16.
    Shannon RD (1976) Acta Crystallogr Section A 32:751–767CrossRefGoogle Scholar
  17. 17.
    Catlow CRA, Chadwick AV, Greaves GN, Moroney LM (1986) J Am Ceram Soc 69:272–277CrossRefGoogle Scholar
  18. 18.
    Bogicevic A, Wolverton C, Crosbie GM, Stechel EB (2001) Phys Rev B 64:014106CrossRefGoogle Scholar
  19. 19.
    Filal M, Petot C, Mokchah M, Chateau C, Carpentier JL (1995) Solid State Ion 80:27–35CrossRefGoogle Scholar
  20. 20.
    Lee TA, Navrotsky A, Molodetsky I (2003) J Mater Res 18:908–918CrossRefGoogle Scholar
  21. 21.
    Irvine JTS, Dobson JWL, Politova T, Martin SG, Shenouda A (2007) Faraday Discuss 134:41–49CrossRefGoogle Scholar
  22. 22.
    Ioffe AI, Rutman DS, Karpachov SV (1978) Electrochim Acta 23:141CrossRefGoogle Scholar
  23. 23.
    Strickler DW, Carlson WG (1964) J Am Ceram Soc 47:122–127CrossRefGoogle Scholar
  24. 24.
    Pornprasertsuk R, Ramanarayanan P, Musgrave CB, Prinz FB (2005) J Appl Phys 98:103513CrossRefGoogle Scholar
  25. 25.
    Badwal SPS, Ciacchi FT, Rajendran S, Drennan J (1998) Solid State Ion 109:167–186CrossRefGoogle Scholar
  26. 26.
    Ciacchi FT, Badwal SPS (1991) J Eur Ceram Soc 7:197–206CrossRefGoogle Scholar
  27. 27.
    Jayaratna M, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C240–C242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations