Ionics

, Volume 14, Issue 3, pp 191–195 | Cite as

Electron energy-loss spectroscopy in the low-loss region as a characterization tool of electrode materials

Original Paper

Abstract

Energy losses below 100 eV are by far less exploited than higher losses in electron energy-loss spectroscopy. Two new examples are given to illustrate the characterization possibilities offered by spectra in this energy range. Typical materials that could be used as electrodes in electrochemical cells were chosen as application cases. Through the use of calculations based on density functional theory, we first demonstrate that the first peak present at the lithium K edge in LixTiP4 can give access to the precise localisation of inserted Li atoms in the f.c.c. structure. In particular, different tetrahedral sites could be differentiated according to their distance to the Ti site. Secondly, calculations of valence electron energy-loss spectra of perovskite materials indicate that a characteristic peak for regular perovskite (Pm \(\overline 3 \)m space group) exists in the 10–15 eV range. The high sensitivity of this peak to the distortion of the octahedron arrangements is also demonstrated.

Keywords

Li battery Electronic structure DFT calculation Perovskite Electron energy-loss spectroscopy VEELS 

References

  1. 1.
    Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. Plenum, New YorkGoogle Scholar
  2. 2.
    Ahn CC (2004) Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS atlas. Wiley-VCHGoogle Scholar
  3. 3.
    Daniels HR, Brydson R, Brown A, Rand B (2003) Ultramicroscopy proceedings of the international workshop on strategies and advances in atomic level spectroscopy and analysis 96:547–558Google Scholar
  4. 4.
    Grigis C, Schamm S (1998) Ultramicroscopy 74:159–167CrossRefGoogle Scholar
  5. 5.
    Knupfer M, Fink J (2004) Synthetic Metals 141:21–27CrossRefGoogle Scholar
  6. 6.
    Marini A, Del Sole R, Rubio A (2003) Phys Rev Lett 91:256402CrossRefGoogle Scholar
  7. 7.
    Tafto J, Krivanek OL (1982) Phys Rev Lett 48:560–563CrossRefGoogle Scholar
  8. 8.
    Pearson DHAhn CC, Fultz B (1993) Phys Rev B 47:8471–8478CrossRefGoogle Scholar
  9. 9.
    Gloter A, Serin V, Turquat C, Cesari C, Leroux C, Nihoul G (2001) Eur Phys J B 22:179CrossRefGoogle Scholar
  10. 10.
    Lie K, Hoier R, Brydson R (2000) Phys Rev B 61:1786–1794CrossRefGoogle Scholar
  11. 11.
    Graetz J, Hightower A, Ahn CC, Yazami R, Rez P, Fultz B (2002) J Phys Chem B 106:1286–1289CrossRefGoogle Scholar
  12. 12.
    Shiraishi Y, Nakai I, Kimoto K, Matsui Y (2001) J Power Sources 97-98:461–464CrossRefGoogle Scholar
  13. 13.
    Backhaus-Ricoult M (2006) Solid State Ionics Solid State Ionics 15: Proceedings of the 15th International Conference on Solid State Ionics, Part I 177:2195–2200Google Scholar
  14. 14.
    Rez P, Bruley J, Brohan P, Payne M, Garvie LAJ (1995) Ultramicroscopy 59:159–167CrossRefGoogle Scholar
  15. 15.
    Hébert C, Luitz J, Schattschneider P (2003) Micron 34:219–225CrossRefGoogle Scholar
  16. 16.
    Blaha P, Schwarz K, Madsen GKH, Kvaniscka D, Luitz J (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Schwarz K., Techn. Universität Wien, AustriaGoogle Scholar
  17. 17.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRefGoogle Scholar
  18. 18.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  19. 19.
    Keast VJ (2005) J Electron Spectrosc Relat Phenom 143:97CrossRefGoogle Scholar
  20. 20.
    Launay M, Boucher F, Moreau P (2004) Phys Rev B 69:035101–035109CrossRefGoogle Scholar
  21. 21.
    Mauchamp V, Boucher F, Ouvrard G, Moreau P (2006) Phys Rev B 74:115106–115110CrossRefGoogle Scholar
  22. 22.
    Singh DJ (1994) Planewaves, pseudopotentials and the LAPW method. Kluwer AcademicGoogle Scholar
  23. 23.
    Cottenier S (2002) Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction-Instituut voor kern-en Stralingsfysica, K. U. Leuven, Belgium, 2002, to be found at http://www.wien2k.at/reguser/textbooks
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. 25.
    Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223–16233CrossRefGoogle Scholar
  26. 26.
    Ambrosch-Draxl C, Majewski JA, Vogl P, Leising G (1995) Phys Rev B 51:9668–9676CrossRefGoogle Scholar
  27. 27.
    Ambrosch-Draxl C, Sofo J (2006) Comp Phys Comm 175:1CrossRefGoogle Scholar
  28. 28.
    Doublet M-L, Lemoigno F, Gillot F, Monconduit L (2002) Chem Mater 14:4126–4133CrossRefGoogle Scholar
  29. 29.
    Bichat M-P, Gillot F, Monconduit L, Favier F, Morcrette M, Lemoigno F, Doublet M-L (2004) Chem Mater 16:1002–1013CrossRefGoogle Scholar
  30. 30.
    NIST/FIZ, Inorganic Crystal Structure Database (2007) Version 1.4.2Google Scholar
  31. 31.
    Mauchamp V, Moreau P, Monconduit L, Doublet M-L, Boucher F, Ouvrard G (2007) J Phys Chem. C 111:3996–4002CrossRefGoogle Scholar
  32. 32.
    Fallon P, Walsh CA, PEELS programme (1996) University of Cambridge, UKGoogle Scholar
  33. 33.
    Mitterbauer C, Kothleitner G, Grogger W, Zandbergen H, Freitag B, Tiemeijer P, Hofer F (2003) Ultramicroscopy 96:469–480 Profceedings of the International Workshop on Strategies and Advances in Atomic Level Spectroscopy and AnalysisCrossRefGoogle Scholar
  34. 34.
    Rafferty B, Brown LM (1998) Phys Rev B 58:10326CrossRefGoogle Scholar
  35. 35.
    Ferrari AC, Libassi A, Tanner BK, Stolojan V, Yuan J, Brown LM, Rodil SE, Kleinsorge B, Robertson J (2000) Phys Rev B 62:11089–11103CrossRefGoogle Scholar
  36. 36.
    Grey CP, Dupre N (2004) Chem Rev 104:4493–4512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut des Matériaux Jean Rouxel, UMR 6502, CNRS-Université de NantesNantes Cedex 3France

Personalised recommendations