Advertisement

Ionics

, Volume 14, Issue 4, pp 279–283 | Cite as

Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework

  • C. Combelles
  • M.-L. DoubletEmail author
Original Paper

Abstract

The iron-based metal organic framework (MOF) presently studied is the first example of MOF showing a reversible electrochemical Li insertion with a very good cycling life. Its potential application as a cathode material in Li-ion battery is nevertheless curbed by a rather poor capacity of 70 mAh/g. To figure out the origin of this limited insertion, first-principles density functional theory (DFT)+U calculations were performed. The results show that FeIII{OH(BDC)} is a weak anti-ferromagnetic charge transfer insulator at T = 0 K with iron in the high-spin S = 5/2 state. In agreement with the absence of electronic de-localisation along the inorganic chains, lithium insertion leads to the stabilisation of a FeII/FeIII mixed-valence state of class I or II in the Robin–Day classification, whatever the Li sites considered in the calculations. Among these Li sites, the most probable site I (OH-Li) and site II (O=CO-Li) are shown to induce incompatible structural changes on the reduced Li0.5Fe{OH(BDC)} form that could be at the origin of the small capacity measured for this compound.

Keywords

First-principles DFT Cathodes Li-ion batteries Magnetism Mixed-valence 

Notes

Acknowledgements

We would like to thank Prof. Jean-Marie Tarascon, Prof. Gérard Ferey and the people from their group for sharing their experimental results. This work was supported by the French computational resources centres IDRIS and CINES (Contract Nos. 71750 and 09-11750) for the computations and by the Agence Nationale de le Recherche (Contract ANR-06-BLAN-0202).

References

  1. 1.
    James SL (2003) Chem Soc Rev 32:276CrossRefGoogle Scholar
  2. 2.
    Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) J Am Chem Soc 126:5666CrossRefGoogle Scholar
  3. 3.
    Janiak CJ (2003) J Chem Soc Dalton Trans 2781Google Scholar
  4. 4.
    Wang L, Tseng KK (2003) J Mater Chem 38:3019Google Scholar
  5. 5.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705CrossRefGoogle Scholar
  6. 6.
    Cussen EJ, Claridge JB, Rosseinsky MJ, Kepert CJ (2002) J Am Chem Soc 124:9574CrossRefGoogle Scholar
  7. 7.
    Millange F, Serre C, Ferey G (2002) Chem Commun 822Google Scholar
  8. 8.
    Li X, Cheng F, Zhang S, Chen J (2006) J Power Sources 160:542CrossRefGoogle Scholar
  9. 9.
    Férey G, Millange F, Morcrette M, Serre C, Doublet M-L, Grenèche J-M, Tarascon J-M (2007) Angew Chem 46:3259CrossRefGoogle Scholar
  10. 10.
    Julien C, Gastro-Garcia SJ (2001) Power Sources 97/98:290CrossRefGoogle Scholar
  11. 11.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188CrossRefGoogle Scholar
  12. 12.
    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulo J (1997) Phys Rev B 56:1356CrossRefGoogle Scholar
  13. 13.
    Mishra SK, Ceder G (1999) Phys Rev B 59:6120CrossRefGoogle Scholar
  14. 14.
    Gillot F, Bichat MP, Favier F, Morcrette M, Doublet M-L, Monconduit L (2004) Electrochim Acta 49:2325CrossRefGoogle Scholar
  15. 15.
    Bichat MP, Gillot F, Monconduit L, Favier F, Morcrette M, Lemoigno F, Doublet M-L (2004) Chem Mater 16:1002CrossRefGoogle Scholar
  16. 16.
    Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943CrossRefGoogle Scholar
  17. 17.
    Anisimov VI, Aryasestiawan V, Liechtenstein AI (1997) J Phys Chem B Condens Mates Surf Interfaces Biophys 9:767Google Scholar
  18. 18.
    Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107CrossRefGoogle Scholar
  19. 19.
    Persson K, Ceder G, Morgan D (2006) Phys Rev B 73:115201CrossRefGoogle Scholar
  20. 20.
    Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) Phys Rev B 70:235121CrossRefGoogle Scholar
  21. 21.
    Loschen C, Carrasco J, Neyman KM, Illas F (2007) Phys Rev B 75:035115CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  23. 23.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  24. 24.
    Liechtenstein AI, Anisimov VI, Zaane J (1995) Phys Rev B 52:R5467CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  26. 26.
    Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533CrossRefGoogle Scholar
  28. 28.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut Charles Gerhardt, CNRS-UMII-ENSCM-UMIUniversité Montpellier IIMontpellier Cedex 5France

Personalised recommendations