Ionics

, Volume 14, Issue 3, pp 243–253 | Cite as

NMR investigation of water and methanol mobility in nanocomposite fuel cell membranes

  • Isabella Nicotera
  • Ameesh Khalfan
  • Gabriel Goenaga
  • Tao Zhang
  • Andrew Bocarsly
  • Steve Greenbaum
Original Paper

Abstract

Water and methanol transport behavior, morphology, and solvent adsorption of filler-free Nafion membrane, Nafion–SiO2, Nafion–TiO2, and two Nafion–Zr(HPO4)2 composites were investigated using nuclear magnetic resonance methods, including spin-lattice relaxation and pulsed-field-gradient spin-echo diffusion conducted under both variable temperature and variable hydrostatic pressure conditions and scanning electron microscopy analysis. A comparison between water and methanol self-diffusion coefficients reveals that the water mobility is higher than the methanol mobility in all the membranes. Additionally, the inclusion of inorganic fillers improves both the solvent uptakes and the transport properties of the composite membranes relative to filler-free Nafion, with the exception of one of the Nafion–Zr(HPO4)2 composite. Nafion–Zr(HPO4)2 composites were prepared by two different procedures, in situ and ex situ. Although phosphorus-31 magic-angle spinning nuclear magnetic resonance spectra show the same structures of the particles in both kinds of membranes, the morphology, solvent absorption properties, and solvent mobilities are very different.

Keywords

Diffusion Composite electrolytes Electron microscopies NMR PEMFCs 

References

  1. 1.
    Adjemian KT, Srinivasan S, Benziger J, Bocarsly AB (2002) J Power Sources 109:356CrossRefGoogle Scholar
  2. 2.
    Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB (2002) J Electrochem Soc 149:A256CrossRefGoogle Scholar
  3. 3.
    Alberti G, Casciola M (1997) Solid State Ionics 97:177CrossRefGoogle Scholar
  4. 4.
    Arico` AS, Creti P, Antonucci PL, Antonucci V (1998) Electrochem. Solid-State Lett 1:66CrossRefGoogle Scholar
  5. 5.
    Kreuer KD (2001) J Membr Sci 185:29CrossRefGoogle Scholar
  6. 6.
    Staiti P, Arico` AS, Baglio V, Lufrano F, Passalacqua E, Antonucci PL (2001) Solid State Ionics 145:101CrossRefGoogle Scholar
  7. 7.
    Costamagna P, Yang C, Bocarsly AB, Srinivasan S (2002) Electrochim Acta 47:1023CrossRefGoogle Scholar
  8. 8.
    Jones DJ, Roziere J (2003) In: Vielstich Lamm Gasteiger WAH (ed) Handbook of fuel cells, fundamentals, technology and applications. Wiley, London, p. 447Google Scholar
  9. 9.
    Dimitrova P, Friedrich KA, Vogt B, Stimming U (2002) J Electroanal Chem 532:75CrossRefGoogle Scholar
  10. 10.
    Arico AS, Baglio V, Antonucci V, Nicotera I, Oliviero C, Coppola L, Antonucci PL (2006) J Membr Sci 270:221CrossRefGoogle Scholar
  11. 11.
    Every HA, Zawodzinski TA (2002) In: Meeting AS (ed) Fuel cell technol.: membr. New Orleans, p 558Google Scholar
  12. 12.
    Stejskal EO, Tanner JE (1965) J Chem Phys 42:288CrossRefGoogle Scholar
  13. 13.
    Fontanella JJ, Edmonson CD, Wintersgill MC, Wu Y, Greenbaum SG (1996) Macromolecules 29:4944CrossRefGoogle Scholar
  14. 14.
    Fontanella JJ, Wintersgill MC, Chen RS, Wu Y, Greenbaum SG (1995) Electrochem Acta 40:2321CrossRefGoogle Scholar
  15. 15.
    Jayakody JRP, Stallworth PE, Mananga ES, Zapata JF, Greenbaum SG (2004) J Phys Chem B 108:4260CrossRefGoogle Scholar
  16. 16.
    Alberti G, Casciola M (2003) Annual Review of Materials Research 33:129CrossRefGoogle Scholar
  17. 17.
    Lee HK, Kim JI, Park JH, Lee TH (2004) Electrochim Acta 50:761–768CrossRefGoogle Scholar
  18. 18.
    Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) J Membr Sci 237:145CrossRefGoogle Scholar
  19. 19.
    Nicotera I, Zhang T, Bocarsly A, Greenbaum S (2007) Journal of Electrochemical Society 154:B466CrossRefGoogle Scholar
  20. 20.
    Jakody J, Stallworth P, Mananga E, Farrington J, Greenbaum S (2004) J Phys Chem B 108:4260CrossRefGoogle Scholar
  21. 21.
    Yoon RH, Vivek S (1998) J Colloid and Interface Sci 204:179–186CrossRefGoogle Scholar
  22. 22.
    Slichter CP (1990) Principles of magnetic resonance, 3rd edn. Springer Series in Solid State Science, New YorkGoogle Scholar
  23. 23.
    Holz M, Heil SR, Sacco A (2000) Phys Chem Chem Phys 2:4740CrossRefGoogle Scholar
  24. 24.
    Alberti G, Casciola M, Costantino U (1978) J Inorg Nucl Chem 33:533CrossRefGoogle Scholar
  25. 25.
    Alberti G, Torracca E (1963) J Inorg Nucl Chem 30:1093CrossRefGoogle Scholar
  26. 26.
    Proton conductors: solids, membranes and gels—materials and devices. Cambridge University Press, LondonGoogle Scholar
  27. 27.
    Gierke TD, Munn GE, Wilson FC (1981) J Polym Sci, A-2 Polym Phys 19:1687Google Scholar
  28. 28.
    Yeager HL, Steck A (1981) J Electrochem Soc 128:1880CrossRefGoogle Scholar
  29. 29.
    Segawa K-i, Nakajima Y, Nakata S-i, Asaoka S, Takahashi H (1986) J Catal 101:81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Isabella Nicotera
    • 1
  • Ameesh Khalfan
    • 2
  • Gabriel Goenaga
    • 2
  • Tao Zhang
    • 3
  • Andrew Bocarsly
    • 3
  • Steve Greenbaum
    • 2
  1. 1.Department of ChemistryUniversity of CalabriaCosenzaItaly
  2. 2.Department of Physics and AstronomyHunter College of the City University of New YorkNew YorkUSA
  3. 3.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations