, Volume 14, Issue 1, pp 15–25

Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode

  • Vladimir V. Plashnitsa
  • Taro Ueda
  • Perumal Elumalai
  • Toshikazu Kawaguchi
  • Norio Miura
Original Paper


The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2.


NOx sensor Mixed potential Stabilized zirconia NiO Au Thin film 


  1. 1.
    Miura N, Kurosawa H, Hasei M, Lu G, Yamazoe N (1996) Solid State Ion 86–88:1069–1073CrossRefGoogle Scholar
  2. 2.
    Somov S, Reinhardt G, Guth U, Goepel W (1996) Sens Actuators B 35–36:409–418CrossRefGoogle Scholar
  3. 3.
    Lu G, Miura N, Yamazoe N (1998) Ionics 4:16–24CrossRefGoogle Scholar
  4. 4.
    Miura N, Lu G, Yamazoe N (1998) Sens Actuators B 52:169–178CrossRefGoogle Scholar
  5. 5.
    Menil F, Coillard V, Lucat C (2000) Sens Actuators B 67:1–23CrossRefGoogle Scholar
  6. 6.
    Zhuiykov S, Nakano T, Kunimoto A, Yamazoe N, Miura N (2001) Electrochem Commun 3:97–101CrossRefGoogle Scholar
  7. 7.
    Miura N, Zhuiykov S, Ono T, Hasei M, Yamazoe N (2002) Sens Actuators B 83:222–229CrossRefGoogle Scholar
  8. 8.
    Guth U, Zosel J (2004) Ionics 10:366–377CrossRefGoogle Scholar
  9. 9.
    Di Bartolomeo E, Kaabbuathong N, Grilli ML, Traversa E (2004) Solid State Ion 171:173–181CrossRefGoogle Scholar
  10. 10.
    Szabo NF, Dutta PK (2004) Solid State Ion 171:183–190CrossRefGoogle Scholar
  11. 11.
    Ono T, Hasei M, Kunimoto A, Miura N (2004) Solid State Ion 175:503–506CrossRefGoogle Scholar
  12. 12.
    Miura N, Wang J, Nakatou M, Elumalai P, Hasei M (2005) Electrochem Solid State Lett 8:H9–H11CrossRefGoogle Scholar
  13. 13.
    West DL, Montgomery FC, Armstrong TR (2005) Sens Actuators B 106:758–765CrossRefGoogle Scholar
  14. 14.
    Elumalai P, Wang J, Zhuiykov S, Terada D, Hasei M, Miura N (2005) J Electrochem Soc 152:H95–H101CrossRefGoogle Scholar
  15. 15.
    Elumalai P, Miura N (2005) Solid State Ion 176:2517–2522CrossRefGoogle Scholar
  16. 16.
    Miura N, Wang J, Nakatou M, Elumalai P, Zhuiykov S, Hasei M (2006) Sens Actuators B 114:903–909CrossRefGoogle Scholar
  17. 17.
    Wang J, Elumalai P, Terada D, Hasei M, Miura N (2006) Solid State Ion 177:2305–2311CrossRefGoogle Scholar
  18. 18.
    Elumalai P, Plashnitsa VV, Ueda T, Hasei M, Miura N (2006) Ionics 12:331–337CrossRefGoogle Scholar
  19. 19.
    Yoo J, Chatterjee S, Wachsman ED (2007) Sens Actuators B 122:644–652CrossRefGoogle Scholar
  20. 20.
    Plashnitsa VV, Ueda T, Miura N (2006) Rare Metal Mat Eng 35:36–39Google Scholar
  21. 21.
    Montmeat P, Marchand JC, Lalauze R, Viricelle JP, Tournier G, Pijolat C (2003) Sens Actuators B 95:83–89CrossRefGoogle Scholar
  22. 22.
    Thiemann S, Hartung R, Wulff H, Klimke J, Möbius HH, Guth U, Schönauer U (1996) Solid State Ion 86–88:873–876CrossRefGoogle Scholar
  23. 23.
    Guillet N, Lalauze R, Pijolat C (2004) Sens Actuators B 98:130–139CrossRefGoogle Scholar
  24. 24.
    Zosel J, Ahlborn K, Müller R, Westphal D, Vaschook V, Guth U (2004) Solid State Ion 169:115–119CrossRefGoogle Scholar
  25. 25.
    Zosel J, Westphal D, Jakobs S, Müller R, Guth U (2002) Solid State Ion 152–153:525–529CrossRefGoogle Scholar
  26. 26.
    Zosel J, Schiffel G, Gerlach F, Ahlborn K, Sasum U, Vaschook V, Guth U (2006) Solid State Ion 177:2301–2304CrossRefGoogle Scholar
  27. 27.
    Di Bartolomeo E, Kaabbuathong N, D’Epifanio A, Grilli ML, Traversa E, Aono H, Sadaoka Y (2004) J Europ Ceram Soc 24:1187–1190CrossRefGoogle Scholar
  28. 28.
    Yoon JW, Grilli ML, Di Bartolomeo E, Polini R, Traversa E (2001) Sens Actuators B 76:483–488CrossRefGoogle Scholar
  29. 29.
    Xiong W, Kale GM (2006) Sens Actuators B 119:409–414CrossRefGoogle Scholar
  30. 30.
    Xiong W, Kale GM (2006) Sens Actuators B 114:101–108CrossRefGoogle Scholar
  31. 31.
    Plashnitsa VV, Ueda T, Miura N (2006) Int J Appl Ceram Technol 3:127–133CrossRefGoogle Scholar
  32. 32.
    Brosha EL, Mukundan R, Lujan R, Garzon FH (2006) Sens Actuators B 119:398–408CrossRefGoogle Scholar
  33. 33.
    Powell CJ, Erickson NE, Jach T (1982) J Vac Sci Technol 20:625CrossRefGoogle Scholar
  34. 34.
    Crist BV (2000) Handbook of monochromatic XPS spectra: the elements and native oxides. Wiley, New YorkGoogle Scholar
  35. 35.
    Salvati L, Makovsky LE, Stencel JM, Brown FR, Hercules DM (1981) J Phys Chem 85:3700–3707CrossRefGoogle Scholar
  36. 36.
    Reguig BA, Regragui M, Morsli M, Khelil A, Addou M, Bernede JC (2006) Solar Sci Mat Solar Cells 90:1381–1392CrossRefGoogle Scholar
  37. 37.
    Miura N, Nakatou M, Zhuiykov S (2003) Sens Actuators B 93:221–228CrossRefGoogle Scholar
  38. 38.
    Miura N, Nakatou M, Zhuiykov S (2002) Electrochem Commun 4:284–287CrossRefGoogle Scholar
  39. 39.
    Pireaux JJ, Chtaib M, Pelrue JP, Thiry PA, Liehr M, Caudano R (1984) Surf Sci 141:221–232CrossRefGoogle Scholar
  40. 40.
    Legare P, Hilaire L, Sotto M, Maire G (1980) Surf Sci 91:175–186CrossRefGoogle Scholar
  41. 41.
    Eley DD, Moore PB (1978) Surf Sci 76:L599–L602CrossRefGoogle Scholar
  42. 42.
    Canning NDS, Outka D, Madix RJ (1984) Surf Sci 141:240–254CrossRefGoogle Scholar
  43. 43.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113–122CrossRefGoogle Scholar
  44. 44.
    Chester MA, Samorjai GA (1975) Surf Sci 52:21–28CrossRefGoogle Scholar
  45. 45.
    Morrison SR (1987) Sensors Actuators 12:425–440CrossRefGoogle Scholar
  46. 46.
    Schrader ME (1977) J Colloid Interface Sci 59:456–460CrossRefGoogle Scholar
  47. 47.
    Bartram ME, Koel BE (1989) Surf Sci 213:137–156CrossRefGoogle Scholar
  48. 48.
    Wickham DT, Banse BA, Koel BE (1990) Catal Lett 6:163–172CrossRefGoogle Scholar
  49. 49.
    Lu X, Xu X, Wang N, Zhang Q (1999) J Phys Chem A 103:10969–10974CrossRefGoogle Scholar
  50. 50.
    Liu H, Kozlov AI, Kozlova AP, Shida T, Ywasawa Y (1999) Phys Chem Chem Phys 1:2851–2860CrossRefGoogle Scholar
  51. 51.
    Horvath D, Toth L, Guczi L (2000) Catal Lett 67:117–128CrossRefGoogle Scholar
  52. 52.
    Guczi L, Horvath D, Paszti Z, Peto G (2002) Catal Today 72:101–105CrossRefGoogle Scholar
  53. 53.
    Grzybowska-Swierkosz B (2006) Catal Today 112:3–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Vladimir V. Plashnitsa
    • 1
  • Taro Ueda
    • 2
  • Perumal Elumalai
    • 1
  • Toshikazu Kawaguchi
    • 1
  • Norio Miura
    • 1
  1. 1.Art, Science and Technology Center for Cooperative ResearchKyushu UniversityKasuga-shiJapan
  2. 2.Interdisciplinary Graduate School of Engineering SciencesKyushu UniversityKasuga-shiJapan

Personalised recommendations