Ionics

, Volume 14, Issue 1, pp 15–25

Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode

  • Vladimir V. Plashnitsa
  • Taro Ueda
  • Perumal Elumalai
  • Toshikazu Kawaguchi
  • Norio Miura
Original Paper

Abstract

The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2.

Keywords

NOx sensor Mixed potential Stabilized zirconia NiO Au Thin film 

References

  1. 1.
    Miura N, Kurosawa H, Hasei M, Lu G, Yamazoe N (1996) Solid State Ion 86–88:1069–1073CrossRefGoogle Scholar
  2. 2.
    Somov S, Reinhardt G, Guth U, Goepel W (1996) Sens Actuators B 35–36:409–418CrossRefGoogle Scholar
  3. 3.
    Lu G, Miura N, Yamazoe N (1998) Ionics 4:16–24CrossRefGoogle Scholar
  4. 4.
    Miura N, Lu G, Yamazoe N (1998) Sens Actuators B 52:169–178CrossRefGoogle Scholar
  5. 5.
    Menil F, Coillard V, Lucat C (2000) Sens Actuators B 67:1–23CrossRefGoogle Scholar
  6. 6.
    Zhuiykov S, Nakano T, Kunimoto A, Yamazoe N, Miura N (2001) Electrochem Commun 3:97–101CrossRefGoogle Scholar
  7. 7.
    Miura N, Zhuiykov S, Ono T, Hasei M, Yamazoe N (2002) Sens Actuators B 83:222–229CrossRefGoogle Scholar
  8. 8.
    Guth U, Zosel J (2004) Ionics 10:366–377CrossRefGoogle Scholar
  9. 9.
    Di Bartolomeo E, Kaabbuathong N, Grilli ML, Traversa E (2004) Solid State Ion 171:173–181CrossRefGoogle Scholar
  10. 10.
    Szabo NF, Dutta PK (2004) Solid State Ion 171:183–190CrossRefGoogle Scholar
  11. 11.
    Ono T, Hasei M, Kunimoto A, Miura N (2004) Solid State Ion 175:503–506CrossRefGoogle Scholar
  12. 12.
    Miura N, Wang J, Nakatou M, Elumalai P, Hasei M (2005) Electrochem Solid State Lett 8:H9–H11CrossRefGoogle Scholar
  13. 13.
    West DL, Montgomery FC, Armstrong TR (2005) Sens Actuators B 106:758–765CrossRefGoogle Scholar
  14. 14.
    Elumalai P, Wang J, Zhuiykov S, Terada D, Hasei M, Miura N (2005) J Electrochem Soc 152:H95–H101CrossRefGoogle Scholar
  15. 15.
    Elumalai P, Miura N (2005) Solid State Ion 176:2517–2522CrossRefGoogle Scholar
  16. 16.
    Miura N, Wang J, Nakatou M, Elumalai P, Zhuiykov S, Hasei M (2006) Sens Actuators B 114:903–909CrossRefGoogle Scholar
  17. 17.
    Wang J, Elumalai P, Terada D, Hasei M, Miura N (2006) Solid State Ion 177:2305–2311CrossRefGoogle Scholar
  18. 18.
    Elumalai P, Plashnitsa VV, Ueda T, Hasei M, Miura N (2006) Ionics 12:331–337CrossRefGoogle Scholar
  19. 19.
    Yoo J, Chatterjee S, Wachsman ED (2007) Sens Actuators B 122:644–652CrossRefGoogle Scholar
  20. 20.
    Plashnitsa VV, Ueda T, Miura N (2006) Rare Metal Mat Eng 35:36–39Google Scholar
  21. 21.
    Montmeat P, Marchand JC, Lalauze R, Viricelle JP, Tournier G, Pijolat C (2003) Sens Actuators B 95:83–89CrossRefGoogle Scholar
  22. 22.
    Thiemann S, Hartung R, Wulff H, Klimke J, Möbius HH, Guth U, Schönauer U (1996) Solid State Ion 86–88:873–876CrossRefGoogle Scholar
  23. 23.
    Guillet N, Lalauze R, Pijolat C (2004) Sens Actuators B 98:130–139CrossRefGoogle Scholar
  24. 24.
    Zosel J, Ahlborn K, Müller R, Westphal D, Vaschook V, Guth U (2004) Solid State Ion 169:115–119CrossRefGoogle Scholar
  25. 25.
    Zosel J, Westphal D, Jakobs S, Müller R, Guth U (2002) Solid State Ion 152–153:525–529CrossRefGoogle Scholar
  26. 26.
    Zosel J, Schiffel G, Gerlach F, Ahlborn K, Sasum U, Vaschook V, Guth U (2006) Solid State Ion 177:2301–2304CrossRefGoogle Scholar
  27. 27.
    Di Bartolomeo E, Kaabbuathong N, D’Epifanio A, Grilli ML, Traversa E, Aono H, Sadaoka Y (2004) J Europ Ceram Soc 24:1187–1190CrossRefGoogle Scholar
  28. 28.
    Yoon JW, Grilli ML, Di Bartolomeo E, Polini R, Traversa E (2001) Sens Actuators B 76:483–488CrossRefGoogle Scholar
  29. 29.
    Xiong W, Kale GM (2006) Sens Actuators B 119:409–414CrossRefGoogle Scholar
  30. 30.
    Xiong W, Kale GM (2006) Sens Actuators B 114:101–108CrossRefGoogle Scholar
  31. 31.
    Plashnitsa VV, Ueda T, Miura N (2006) Int J Appl Ceram Technol 3:127–133CrossRefGoogle Scholar
  32. 32.
    Brosha EL, Mukundan R, Lujan R, Garzon FH (2006) Sens Actuators B 119:398–408CrossRefGoogle Scholar
  33. 33.
    Powell CJ, Erickson NE, Jach T (1982) J Vac Sci Technol 20:625CrossRefGoogle Scholar
  34. 34.
    Crist BV (2000) Handbook of monochromatic XPS spectra: the elements and native oxides. Wiley, New YorkGoogle Scholar
  35. 35.
    Salvati L, Makovsky LE, Stencel JM, Brown FR, Hercules DM (1981) J Phys Chem 85:3700–3707CrossRefGoogle Scholar
  36. 36.
    Reguig BA, Regragui M, Morsli M, Khelil A, Addou M, Bernede JC (2006) Solar Sci Mat Solar Cells 90:1381–1392CrossRefGoogle Scholar
  37. 37.
    Miura N, Nakatou M, Zhuiykov S (2003) Sens Actuators B 93:221–228CrossRefGoogle Scholar
  38. 38.
    Miura N, Nakatou M, Zhuiykov S (2002) Electrochem Commun 4:284–287CrossRefGoogle Scholar
  39. 39.
    Pireaux JJ, Chtaib M, Pelrue JP, Thiry PA, Liehr M, Caudano R (1984) Surf Sci 141:221–232CrossRefGoogle Scholar
  40. 40.
    Legare P, Hilaire L, Sotto M, Maire G (1980) Surf Sci 91:175–186CrossRefGoogle Scholar
  41. 41.
    Eley DD, Moore PB (1978) Surf Sci 76:L599–L602CrossRefGoogle Scholar
  42. 42.
    Canning NDS, Outka D, Madix RJ (1984) Surf Sci 141:240–254CrossRefGoogle Scholar
  43. 43.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113–122CrossRefGoogle Scholar
  44. 44.
    Chester MA, Samorjai GA (1975) Surf Sci 52:21–28CrossRefGoogle Scholar
  45. 45.
    Morrison SR (1987) Sensors Actuators 12:425–440CrossRefGoogle Scholar
  46. 46.
    Schrader ME (1977) J Colloid Interface Sci 59:456–460CrossRefGoogle Scholar
  47. 47.
    Bartram ME, Koel BE (1989) Surf Sci 213:137–156CrossRefGoogle Scholar
  48. 48.
    Wickham DT, Banse BA, Koel BE (1990) Catal Lett 6:163–172CrossRefGoogle Scholar
  49. 49.
    Lu X, Xu X, Wang N, Zhang Q (1999) J Phys Chem A 103:10969–10974CrossRefGoogle Scholar
  50. 50.
    Liu H, Kozlov AI, Kozlova AP, Shida T, Ywasawa Y (1999) Phys Chem Chem Phys 1:2851–2860CrossRefGoogle Scholar
  51. 51.
    Horvath D, Toth L, Guczi L (2000) Catal Lett 67:117–128CrossRefGoogle Scholar
  52. 52.
    Guczi L, Horvath D, Paszti Z, Peto G (2002) Catal Today 72:101–105CrossRefGoogle Scholar
  53. 53.
    Grzybowska-Swierkosz B (2006) Catal Today 112:3–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Vladimir V. Plashnitsa
    • 1
  • Taro Ueda
    • 2
  • Perumal Elumalai
    • 1
  • Toshikazu Kawaguchi
    • 1
  • Norio Miura
    • 1
  1. 1.Art, Science and Technology Center for Cooperative ResearchKyushu UniversityKasuga-shiJapan
  2. 2.Interdisciplinary Graduate School of Engineering SciencesKyushu UniversityKasuga-shiJapan

Personalised recommendations