Advertisement

Mathematics and Financial Economics

, Volume 8, Issue 1, pp 71–108 | Cite as

Nonmyopic optimal portfolios in viable markets

  • Jakša Cvitanić
  • Semyon Malamud
Article
  • 286 Downloads

Abstract

We provide a representation for the nonmyopic optimal portfolio of an agent consuming only at the terminal horizon when the single state variable follows a general diffusion process and the market consists of one risky asset and a risk-free asset. The key term of our representation is a new object that we call the “rate of macroeconomic fluctuation” whose properties are fundamental for the portfolio dynamics. We show that, under natural cyclicality conditions, (i) the agent’s hedging demand is positive (negative) when the product of his prudence and risk tolerance is below (above) two and (ii) the portfolio weights decrease in risk aversion. We apply our results to study a general continuous-time capital asset pricing model and show that under the same cyclicality conditions, the market price of risk is countercyclical and the price of the risky asset exhibits excess volatility.

Keywords

Heterogeneous agents Nonmyopic optimal portfolios  Hedging demand Equilibrium 

JEL Classification

D53 G11 G12 

Notes

Acknowledgments

The research of J. Cvitanić was supported in part by NSF grant DMS 10-08219. The research of S. Malamud was supported in part by NCCR FINRISK, Project D1. We thank Patrick Bolton, Jerome Detemple, Bernard Dumas, Campbell Harvey, Julien Hugonnier, Elyes Jouini, Loriano Mancini, Rajnish Mehra, and Erwan Morellec for helpful comments, as well as audiences at a number of seminars and conferences. Existing errors are our sole responsibility. A previous version of this paper was titled “Equilibrium Asset Pricing and Portfolio Choice with Heterogeneous Preferences”.

References

  1. 1.
    Arrow, K.J.: Aspects of the Theory of Risk-Bearing. Yrjö Hahnsson Foundation, Helsinki (1965)Google Scholar
  2. 2.
    Aura, S., Diamond, P., Geanakoplos, J.: Savings and portfolio choice in a two-period two-asset model. Am. Econ. Rev. 92(4), 1185–1191 (2002)Google Scholar
  3. 3.
    Barberis, N.: Investing for the long run when returns are predictable. J. Financ. 55, 225–264 (2000)Google Scholar
  4. 4.
    Basak, S.: Asset pricing with heterogeneous beliefs. J. Bank. Financ. 29, 2849–2881 (2005)Google Scholar
  5. 5.
    Basak, S., Cuoco, D.: An equilibrium model with restricted stock market participation. Rev. Financ. Stud. 11, 309–341 (1998)Google Scholar
  6. 6.
    Bhamra, H.S., Uppal, R.: The effect of introducing a non-redundant derivative on the volatility of stock-market returns when agents differ in risk aversion. Rev. Financ. Stud. 22, 2303–2330 (2009)Google Scholar
  7. 7.
    Bhamra, H.S., Uppal, R.: Asset prices with heterogeneity in preferences and beliefs. Rev. Financ. Stud. (2013) (forthcoming)Google Scholar
  8. 8.
    Benninga, S., Mayshar, J.: Heterogeneity and option pricing. Rev. Deriv. Res. 4(1), 7–27 (2000)Google Scholar
  9. 9.
    Berrada, T., Hugonnier, J., Rindisbacher, M.: Heterogenous preferences and equilibrium trading volume. J. Financ. Econ. 83, 719–750 (2007)Google Scholar
  10. 10.
    Biais, B., Bossaerts, P., Spatt, C.: Equilibrium asset pricing and portfolio choice under asymmetric information. Rev. Financ. Stud. 23, 1503–1543 (2010)Google Scholar
  11. 11.
    Bick, A.: On viable diffusion price processes of the market portfolio. J. Financ. 15, 673–689 (1990)Google Scholar
  12. 12.
    Brunnermeier, M., Nagel, S.: Do wealth fluctuations generate time-varying risk aversion? Micro-evidence on individuals’ asset allocation. Am. Econ. Rev. 98(3), 713–736 (2008)Google Scholar
  13. 13.
    Campbell, J.Y., Cochrane, J.: By force of habit: a consumption-based explanation of aggregate stock market behavior. J. Political Econ. 107, 205–251 (1999)Google Scholar
  14. 14.
    Campbell, J., Viciera, L.: Consumption and portfolio decisions when expected returns are time varying. Q. J. Econ. 114, 433–495 (1999)Google Scholar
  15. 15.
    Constantinides, G., Duffie, D.: Asset pricing with heterogeneous consumers. J. Political Econ. 104(2), 219–240 (1996)Google Scholar
  16. 16.
    Kaniel, R., Cuoco, D.: Equilibrium prices in the presence of delegated portfolio management. J. Financ. Econ. 101, 264–296 (2011)Google Scholar
  17. 17.
    Cvitanić, J., Malamud, S.: Relative extinction of heterogeneous agents. B. E. J. Theor. Econ. 10(1) (2010)Google Scholar
  18. 18.
    Cvitanić, J., Malamud, S.: Price impact and portfolio impact. J. Financ. Econ. 100, 201–225 (2011)Google Scholar
  19. 19.
    Cvitanić, J., Jouini, E., Malamud, S., Napp, C.: Financial markets equilibrium with heterogeneous agents. Rev. Financ. 16, 285–321 (2012)Google Scholar
  20. 20.
    Dana, R.-A.: An extension of Milleron, Mitjushin and Polterovich’s result. J. Math. Econ. 24(3), 259–269 (1995)Google Scholar
  21. 21.
    Dana, R.-A.: Risk aversion and uniqueness of equilibrium. An application to financial markets. Rev. Econ. Des. 6, 155–173 (special issue in the honor of R. Radner, edited by Ischiishi., T. et Marshak, T.) (2001)Google Scholar
  22. 22.
    Detemple, J.B., Garcia, R., Rindisbacher, M.: A Monte Carlo method for optimal portfolios. J. Financ. 58, 401–446 (2003)Google Scholar
  23. 23.
    Detemple, J.B., Rindisbacher, M.: Closed form solutions for optimal portfolio selection with stochastic interest rate and investment constraints. Math. Financ. 15(4), 539–568 (2005)Google Scholar
  24. 24.
    Detemple, J.B., Rindisbacher, M.: Dynamic asset allocation: portfolio decomposition formula and applications. Rev. Financ. Stud. 23(1), 25–100 (2009)Google Scholar
  25. 25.
    Detemple, J.B., Zapatero, F.: Asset prices in an exchange economy with habit formation. Econometrica 59, 1633–1657 (1991)Google Scholar
  26. 26.
    Duffie, D., Huang, C.-F.: Implementing Arrow–Debreu equilibria by continuous trading of few long-lived securities. Econometrica 53(6), 1337–1356 (1986)Google Scholar
  27. 27.
    Dumas, B.: Two-person dynamic equilibrium in the capital market. Rev. Financ. Stud. 2, 157–188 (1989)Google Scholar
  28. 28.
    Dumas, B., Fleming, J., Whaley, R.E.: Implied volatility functions: empirical tests. J. Financ. 53(6), 2059–2106 (1998)Google Scholar
  29. 29.
    Dumas, B., Kurshev, A., Uppal, R.: Equilibrium portfolio strategies in the presence of sentiment risk and excess volatility. J. Financ. 64(2), 579–629 (2008)Google Scholar
  30. 30.
    Fama, E.F., French, K.R.: Business conditions and expected returns on stocks and bonds. J. Financ. Econ. 25, 23–49 (1989)Google Scholar
  31. 31.
    Ferson, William E., Harvey, Campbell R.: The variation of economic risk premiums. J. Political Econ. 99, 385–415 (1991)Google Scholar
  32. 32.
    French, M.W., Sichel, D.E.: Cyclical patterns in the variance of economic activity. J. Bus. Econ. Stat. 11(1), 113–119 (1993)Google Scholar
  33. 33.
    Gennotte, G., Marsh, T.A.: Variations in economic uncertainty and risk premiums on capital assets. Eur. Econ. Rev. 37(5), 1021–1041 (1993)Google Scholar
  34. 34.
    Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Financ. 48(5), 1779–1801 (1993)Google Scholar
  35. 35.
    Gollier, C., Pratt, J.W.: Risk vulnerability and the tempering effect of background risk. Econometrica 64(5), 1109–1123 (1996)Google Scholar
  36. 36.
    Gollier, C.: Wealth inequality and asset pricing. Rev. Econ. Stud. 68, 181–203 (2001)Google Scholar
  37. 37.
    Gollier, C., Zeckhauser, R.J.: Horizon length and portfolio risk. J. Risk Uncertain. 24(3), 195–212 (2002)Google Scholar
  38. 38.
    Gollier, C.: Optimal dynamic portfolio risk with first-order and second-order predictability. B.E. J. Theor. Econ. 0(1) (2004)Google Scholar
  39. 39.
    Grossman, S.J., Zhou, Z.: Equilibrium analysis of portfolio insurance. J. Financ. 51(4),1379–1403Google Scholar
  40. 40.
    Hara, C., Huang, J., Kuzmics, C.: Representative consumer’s risk aversion and efficient risk-sharing rules. J. Econ. Theory 137, 652–672 (2007)Google Scholar
  41. 41.
    Harvey, C.R.: The specification of conditional expectations. J. Empir. Financ. 8(5), 573–637 (2001)Google Scholar
  42. 42.
    He, H., Leland, H.: On equilibrium asset price processes. Rev. Financ. Stud. 6(3), 593–617 (1993)Google Scholar
  43. 43.
    He, H., Huang, C.-F.: Consumption-portfolio policies: an inverse optimal problem. J. Econ. Theory 62(2), 257–293 (1994)Google Scholar
  44. 44.
    Herbst, I., Pitt, L.: Diffusion equation techniques in stochastic monotonicity and positive correlations. Probab. Theory Relat. Fields 87, 275–312 (1991)Google Scholar
  45. 45.
    Hugonnier, J., Malamud, S., Trubowitz, E.: Endogenous completeness of continuous time diffusion driven markets. Econometrica 80(3), 1249–1270 (2012)Google Scholar
  46. 46.
    Jouini, E., Napp, C.: Consensus consumer and intertemporal asset pricing with heterogeneous beliefs. Rev. Econ. Stud. 74(4), 1149–1174 (2007)Google Scholar
  47. 47.
    Kimball, M.S.: Precautionary saving in the small and in the large. Econometrica 58, 53–73 (1990)Google Scholar
  48. 48.
    Kim, T.S., Omberg, E.: Dynamic nonmyopic portfolio behavior. Rev. Financ. Stud. 9(1), 141–161 (1996)Google Scholar
  49. 49.
    Kim, H., Lee, H.I., Park, J.Y., Yeo, H.: Macroeconomic uncertainty and asset prices: a stochastic volatility model. working paper, Texas A &M University (2009)Google Scholar
  50. 50.
    Kogan, L., Ross, S., Wang, J., Westerfield, M.: The price impact and survival of irrational traders. J. Financ. 61(1), 195–229 (2006)Google Scholar
  51. 51.
    LeRoy, S.F., Porter, R.D.: The present-value relation: tests based on implied variance bounds. Econometrica 49, 555–574 (1981)Google Scholar
  52. 52.
    Malamud, S.: Long run forward rates and long yields of bonds and options in heterogeneous equilibria. Financ. Stoch. 12, 245–264 (2008)Google Scholar
  53. 53.
    Mankiw, G.N., Romer, D., Shapiro, M.D.: An unbiased reexamination of stock market volatility. J. Financ. 40, 677–687 (1985)Google Scholar
  54. 54.
    Mankiw, G.N., Romer, D., Shapiro, M.D.: Stock market forecastability and volatility: a statistical appraisal. Rev. Econ. Stud. 58, 455–477 (1991)Google Scholar
  55. 55.
    Mele, A.: Asymmetric stock market volatility and the cyclical behavior of expected returns. J. Financ. Econ. 86, 446–478 (2007)Google Scholar
  56. 56.
    Merton, R.: Lifetime portfolio selection under uncertainty: the continuous time case. Rev. Econ. Stat. 51, 247–257 (1969)Google Scholar
  57. 57.
    Merton, R.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3(4), 373–413 (1971)Google Scholar
  58. 58.
    Merton, R.: An intertemporal asset pricing model. Econometrica 41, 867–887 (1973)Google Scholar
  59. 59.
    Meulbroek, L.: A comparison of forward and futures prices of an interest rate-sensitive financial asset. J. Financ. 47(1), 381–396 (1992)Google Scholar
  60. 60.
    Pratt, J.W.: Risk aversion in the small and in the large. Econometrica 32, 122–136 (1964)Google Scholar
  61. 61.
    Pratt, J.W., Zeckhauser, R.J.: Proper risk aversion. Econometrica 55, 143–154 (1987)Google Scholar
  62. 62.
    Rosenberg, J.V., Engle, R.F.: Empirical pricing kernels. J. Financ. Econ. 64(3), 341–372 (2002)Google Scholar
  63. 63.
    Ross, S.A.: Some stronger measures of risk aversion in the small and in the large with applications. Econometrica 49(3), 621–639 (1981)Google Scholar
  64. 64.
    Shiller, R.J.: Do stock prices move too much to be justified by subsequent changes in dividends? Am. Econ. Rev. 71, 421–436 (1981)Google Scholar
  65. 65.
    Wachter, J.: Portfolio and consumption decisions under mean-reverting returns: an exact solution for complete markets. J. Financ. Quant. Anal. 37, 63–91 (2002)Google Scholar
  66. 66.
    Wang, J.: The term structure of interest rates in a pure exchange economy with heterogeneous investors. J. Financ. Econ. 41, 75–110 (1996)Google Scholar
  67. 67.
    Wang, S.: The integrability problem of asset prices. J. Econ. Theory 59(1), 199–213 (1993)Google Scholar
  68. 68.
    West, K.D.: Dividend innovations and stock price volatility. Econometrica 56, 37–61 (1988)Google Scholar
  69. 69.
    Yan, H.: Natural selection in financial markets: does it work? Manag. Sci. 54(11), 1935–1950 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Humanities and Social SciencesCaltechPasadenaUSA
  2. 2.Swiss Finance Institute, EPF LausanneLausanneSwitzerland

Personalised recommendations