Optimal posting price of limit orders: learning by trading
Article
First Online:
Received:
Accepted:
- 429 Downloads
- 10 Citations
Abstract
We model a trader interacting with a continuous market as an iterative algorithm that adjusts limit prices at a given rhythm and propose a procedure to minimize trading costs. We prove the \(a.s.\) convergence of the algorithm under assumptions on the cost function and give some practical criteria on model parameters to ensure that the conditions to use the algorithm are met (notably, using the co-monotony principle). We illustrate our results with numerical experiments on both simulated and market data.
Keywords
Stochastic approximation Order book Limit order Market impact Statistical learning High-frequency optimal liquidation Poisson process Co-monotony principleMathematics Subject Classification (2000)
62L20 62P05 60G55 65C05References
- 1.Abergel, F., Jedidi, A.: A mathematical approach to order book modelling. In: Abergel, F., Chakrabarti, B.K., Chakraborti, A., Mitra, M. (eds.) Econophysics of Order Driven Markets. Springer, New York (2011)CrossRefGoogle Scholar
- 2.Alfonsi, A., Fruth, A., Schied, A.: Optimal execution strategies in limit order books with general shape functions. Quant. Financ. 10(2), 143–157 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Almgren, R.F., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3(2), 5–39 (2000)Google Scholar
- 4.Avellaneda, M., Stoikov, S.: High-frequency trading in a limit order book. Quant. Financ. 8(3), 217–224 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Bayraktar, E., Ludkovski, M.: Liquidation in limit order books with controlled intensity. CoRR (2011)Google Scholar
- 6.Beskos, A., Roberts, G.O.: Exact simulation of diffusions. Ann. Appl. Prob. 15(4), 2422–2444 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Bouchard, B., Dang, N.-M., Lehalle, C.-A.: Optimal control of trading algorithms: a general impulse control approach. SIAM J. Financ. Math. 2, 404–438 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Duflo, M.: Algorithmes Stochastiques, vol. 23 of Mathématiques & Applications [Mathematics & Applications]. Springer, Berlin (1996)Google Scholar
- 9.Foucault, T., Kadan, O., Kandel, E.: Limit order book as a market for liquidity. Discussion Paper Series dp321, Center for Rationality and Interactive Decision Theory, Hebrew University, Jerusalem, Jan 2003Google Scholar
- 10.Guéant, O., Lehalle, C.-A., Razafinimanana, J.: High frequency simulations of an order book: a two-scales approach. In: Abergel, F., Chakrabarti, B.K., Chakraborti, A., Mitra, M. (eds.) Econophysics of Order-Driven Markets. New Economic Windows. Springer, Milan (2010)Google Scholar
- 11.Guéant, O., Fernandez-Tapia, J., Lehalle, C.-A.: Dealing with the inventory risk. Technical report (2011)Google Scholar
- 12.Guilbaud, F., Pham. H.: Optimal high-frequency trading with limit and market orders. Quant. Finac. to appear (2012)Google Scholar
- 13.Guilbaud, F., Mnif, M., Pham, H.: Numerical methods for an optimal order execution problem. J. Comput. Finan., to appear (2010)Google Scholar
- 14.Ho, T., Stoll, H.R.: Optimal dealer pricing under transactions and return uncertainty. J. Financ. Econ. 9(1), 47–73 (1981)CrossRefGoogle Scholar
- 15.Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes, vol. 288, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2003)Google Scholar
- 16.Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, vol. 113, 2nd edn. Graduate Texts in Mathematics. Springer, New York (1991)Google Scholar
- 17.Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic, New York (1981)zbMATHGoogle Scholar
- 18.Kushner, H.J., Clark, D.S.: Stochastic Approximation Methods for Constrained and Unconstrained Systems, vol. 26 of Applied Mathematical Sciences. Springer, New York (1978)Google Scholar
- 19.Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications, vol. 35 of Applications of Mathematics. Stochastic Modelling and Applied Probability, 2nd edn. Springer, New York (2003)Google Scholar
- 20.Laruelle, S., Pagès, G.: Stochastic approximation with averaging innovation applied to finance. Monte Carlo Methods Appl. 18(1), 1–51 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Laruelle, S., Lehalle, C.-A., Pagès, G.: Optimal split of orders across liquidity pools: a stochastic algorithm approach. SIAM J. Finan. Math. 2(1), 1042–1076 (2011)zbMATHCrossRefGoogle Scholar
- 22.McCulloch, J.: A model of true spreads on limit order markets (2011). SSRN: http://www.ssrn.com/abstract=1815782
- 23.Pagès, G.: A functional co-monotony principle with an application to peacoks. Pre-pub LPMA n\(^\circ \)1536. To appear in sèmin. Proab. XLV (2010)Google Scholar
- 24.Predoiu, S., Shaikhet, G., Shreve, S.: Optimal Execution of a General One-Sided Limit-Order Book. Technical Report. Carnegie Mellon University, Pittsburgh (2010)Google Scholar
- 25.Robert, C.Y., Rosenbaum, M.: A new approach for the dynamics of ultra high frequency data: the model with uncertainty zones. J. Finan. Econ. 9(2), 344–366 (2011)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013