Mathematics and Financial Economics

, Volume 6, Issue 1, pp 1–13 | Cite as

Utility maximization, risk aversion, and stochastic dominance

  • Mathias Beiglböck
  • Johannes Muhle-Karbe
  • Johannes Temme


Consider an investor trading dynamically to maximize expected utility from terminal wealth. Our aim is to study the dependence between her risk aversion and the distribution of the optimal terminal payoff. Economic intuition suggests that high risk aversion leads to a rather concentrated distribution, whereas lower risk aversion results in a higher average payoff at the expense of a more widespread distribution. Dybvig and Wang (J. Econ. Theory, 2011, to appear) find that this idea can indeed be turned into a rigorous mathematical statement in one-period models. More specifically, they show that lower risk aversion leads to a payoff which is larger in terms of second order stochastic dominance. In the present study, we extend their results to (weakly) complete continuous-time models. We also complement an ad-hoc counterexample of Dybvig and Wang, by showing that these results are “fragile”, in the sense that they fail in essentially any model, if the latter is perturbed on a set of arbitrarily small probability. On the other hand, we establish that they hold for power investors in models with (conditionally) independent increments.


Utility maximization Risk aversion Stochastic dominance 

JEL Classification

G11 C61 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow K.J.: Aspects of the Theory of Risk-Bearing. Yrjö Jahnssonin Säätiö, Helsinki (1965)Google Scholar
  2. 2.
    Bellini F., Fritelli M.: On the existence of minimax martingale measures. Math. Financ. 12(1), 1–21 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Benth F.E., Karlsen K.H., Reikvam K.: Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: a viscosity solution approach. Financ. Stoch. 5(3), 275–303 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dybvig, P.H., Wang, Y.: Increases in risk aversion and the distribution of portfolio payoffs. J. Econ. Theory (2011) [To appear]Google Scholar
  5. 5.
    Framstad, N., Øksendal, B., Sulem, A.Y.: Optimal Consumption and Portfolio in a Jump Diffusion Market. Technical. Report 5, Norges Handelshøyskole. Institutt for foretaksøkonomi (1999)Google Scholar
  6. 6.
    Jacod J., Shiryaev A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)zbMATHGoogle Scholar
  7. 7.
    Kallsen J.: Optimal portfolios for exponential Lévy processes. Math. Meth. Oper. Res. 51(3), 357–374 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kallsen J., Muhle-Karbe J.: Utility maximization in models with conditionally independent increments. Ann. Appl. Probab. 20(6), 2162–2177 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kihlstrom R., Romer D., Williams S.: Risk aversion with random initial wealth. Econometrica 49(4), 911–920 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kramkov D., Schachermayer W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kramkov D., Sirbu M.: Sensitivity analysis of utility-based prices and risk-tolerance wealth processes. Ann. Appl. Probab. 16(4), 2140–2194 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nutz, M.: Power utility maximization in constrained exponential Lévy models. Math. Finance (2011) [To appear]Google Scholar
  13. 13.
    Pratt J.W.: Risk aversion in the small and in the large. Econometrica 32(1), 122–136 (1964)CrossRefzbMATHGoogle Scholar
  14. 14.
    Samuelson P.A.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 51(3), 239–246 (1969)CrossRefGoogle Scholar
  15. 15.
    Schachermayer W.: A super-martingale property of the optimal portfolio process. Financ. Stoch. 7(1), 433–456 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schachermayer W., Sîrbu M., Taflin E.: In which financial markets do mutual fund theorems hold true?. Financ. Stoch. 13(1), 49–77 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Strassen V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36(2), 423–439 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Temme, J.: Power utility maximization in discrete-time and continuous-time exponential Lévy models. Preprint (2011)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mathias Beiglböck
    • 1
  • Johannes Muhle-Karbe
    • 2
  • Johannes Temme
    • 1
  1. 1.Fakultät für Mathematik, Universität WienWienAustria
  2. 2.Departement MathematikETH ZürichZürichSwitzerland

Personalised recommendations