Mathematics and Financial Economics

, Volume 5, Issue 1, pp 1–28 | Cite as

Set-valued risk measures for conical market models

  • Andreas H. HamelEmail author
  • Frank Heyde
  • Birgit Rudloff


Set-valued risk measures on \({L^p_d}\) with 0 ≤ p ≤ ∞ for conical market models are defined, primal and dual representation results are given. The collection of initial endowments which allow to super-hedge a multivariate claim are shown to form the values of a set-valued sublinear (coherent) risk measure. Scalar risk measures with multiple eligible assets also turn out to be a special case within the set-valued framework.


Set-valued risk measures Coherent risk measures Conical market model Legendre–Fenchel transform Convex duality Transaction costs Super-hedging 

Mathematics Subject Classification (2000)

91B30 46A20 46N10 26E25 

JEL Classification

C65 D81 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artzner P., Delbaen F., Eber J.-M., Heath D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Artzner P., Delbaen F., Koch-Medina P.: Risk measures and efficient use of capital. ASTIN Bull. 39(1), 101–116 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Burgert C., Rüschendorf L.: Consistent risk measures for portfolio vectors. Insur. Math. Econ. 38(2), 289–297 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cascos I., Molchanov I.: Multivariate risks and depth-trimmed regions. Finance Stoch. 11, 373–397 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 2nd edn. de Gruyter, Berlin (2004)Google Scholar
  6. 6.
    Hamel A.: A duality theory for set-valued functions I: Fenchel conjugation theory. Set Valued Var. Anal. 17, 153–182 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hamel A., Heyde F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1(1), 66–95 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jahn J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2004)zbMATHGoogle Scholar
  9. 9.
    Jouini E., Kallal H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178–197 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jouini E., Meddeb M., Touzi N.: Vector-valued coherent risk measures. Finance Stoch. 8(4), 531–552 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kabanov Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kabanov Y.M., Safarian M.: Markets with Transaction Costs. Springer-Verlag, Berlin (2009)zbMATHGoogle Scholar
  13. 13.
    Pennanen T., Penner I.: Hedging of claims with physical delivery under convex transaction costs. SIAM J. Financ. Math. 1(1), 158–178 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Schachermayer W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14(1), 19–48 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas H. Hamel
    • 1
    Email author
  • Frank Heyde
    • 2
  • Birgit Rudloff
    • 3
  1. 1.Department of Mathematical SciencesYeshiva UniversityNew YorkUSA
  2. 2.Institute of MathematicsUniversity Halle-WittenbergHalleGermany
  3. 3.Princeton University, ORFEPrincetonUSA

Personalised recommendations