Mathematics and Financial Economics

, Volume 3, Issue 1, pp 1–12 | Cite as

Convex compactness and its applications

  • Gordan Žitković


The concept of convex compactness, weaker than the classical notion of compactness, is introduced and discussed. It is shown that a large class of convex subsets of topological vector spaces shares this property and that is can be used in lieu of compactness in a variety of cases. Specifically, we establish convex compactness for certain familiar classes of subsets of the set of positive random variables under the topology induced by convergence in probability. Two applications in infinite-dimensional optimization—attainment of infima and a version of the Minimax theorem—are given. Moreover, a new fixed-point theorem of the Knaster-Kuratowski-Mazurkiewicz-type is derived and used to prove a general version of the Walrasian excess-demand theorem.


Convex compactness Excess-demand theorem Fréchet spaces KKM theorem Minimax theorem Optimization 

JEL Classification

C61 C62 

Mathematics Subject Classification (2000)

Primary 46N10 Secondary 47H10 60G99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow K., Debreu G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bewley T.: Existence of equilibria in economies with infinitely many commodities. J. Econ. Theory 43, 514–540 (1972)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Billingsley, P.: Probability and measure. Wiley Series in Probability and Mathematical Statistics. Wiley, A Wiley-Interscience Publication, New York, Third edition, 1995Google Scholar
  4. 4.
    Buhvalov A.V., Lozanovskiĭ G.Ja.: Sets closed in measure in spaces of measurable functions. Dokl. Akad. Nauk SSSR 212, 1273–1275 (1973)MathSciNetGoogle Scholar
  5. 5.
    Cox J.C., Huang C.F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49, 33–83 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cvitanić J., Schachermayer W., Wang H.: Utility maximization in incomplete markets with random endowment. Finance Stoch. 5, 237–259 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Delbaen, F., Schachermayer, W.: A compactness principle for bounded sequences of martingales with applications. In: Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1996), volume 45 of Progr Probab, pp 137–173. Birkhäuser, Basel (1999)Google Scholar
  8. 8.
    Delbaen F., Schachermayer W.: The Mathematics of Arbitrage. Springer Finance, Springer-Verlag, Berlin (2006)MATHGoogle Scholar
  9. 9.
    Delbaen F., Schachermayer W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(3), 463–520 (1994)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Girardi, M.: Weak vs. norm compactness in L 1: the Bocce criterion. Studia Math. 98(1): 95–97, (1991). ISSN 0039-3223Google Scholar
  11. 11.
    Granas, A., Dugundji, J.: Fixed point theory. Springer Monographs in Mathematics. Springer-Verlag, New York, (2003). ISBN 0-387-00173-5Google Scholar
  12. 12.
    He H., Pearson N.D.: Consumption and portfolio policies with incomplete markets and short-sale constraints: the infinite-dimensional case. J. Econ. Theory 54, 259–304 (1991)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kalton, N.J., Peck, N.T., Roberts, James W.: An F-space sampler, volume 89 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1984) ISBN 0-521-27585-7Google Scholar
  14. 14.
    Karatzas I., Žitković G.: Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31(4), 1821–1858 (2003)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.-L.: Optimality conditions for utility maximization in an incomplete market. In Analysis and optimization of systems (Antibes, 1990), volume 144 of Lecture Notes in Control and Inform. Sci., pp. 3–23. Springer, Berlin (1990)Google Scholar
  16. 16.
    Kardaras, C., Žitković, G.: Stability of the utility maximization problem with random endowment in incomplete markets. to appear in Mathematical Finance, 2007. arxiv:0706.0482Google Scholar
  17. 17.
    Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatsez für n-dimensionale Simplexe. Fund. Math., XIV: 132–137 (1929)Google Scholar
  18. 18.
    Komlós J.: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18, 217–229 (1967)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kramkov D., Schachermayer W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Larsen K., Žitković G.: Stability of utility-maximization in incomplete markets. Stoch. Process. Appl. 117(11), 1642–1662 (2007)MATHCrossRefGoogle Scholar
  21. 21.
    Mas-Colell, A., Zame, W.R.: Equilibrium theory in infinite-dimensional spaces. In: Handbook of mathematical economics, Vol. IV, volume 1 of Handbooks in Economics, pp 1835–1898. North-Holland, Amsterdam (1991)Google Scholar
  22. 22.
    McKenzie L.W.: On the existence of general equilibrium for a competitive market. Econometrica 27, 54–71 (1959)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Merton R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Statist. 51, 247–257 (1969)CrossRefGoogle Scholar
  24. 24.
    Merton R.C.: Optimum consumption and portfolio rules in a conitinuous-time model. J. Econ. Theory 3, 373–413 (1971)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nikišin E.M.: A certain problem of Banach. Dokl. Akad. Nauk SSSR 196, 774–775 (1971)MathSciNetGoogle Scholar
  26. 26.
    Pliska S.R.: A stochastic calculus model of continuous trading: optimal portfolio. Math. Oper. Res. 11, 371–382 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schwartz M.: New proofs of a theorem of Komlós. Acta Math. Hung. 47, 181–185 (1986)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations