WIRTSCHAFTSINFORMATIK

, Volume 56, Issue 3, pp 185–196 | Cite as

Ein selbstregelnder Informationsbeschaffungsalgorithmus zur Vermeidung von Auswahlbedauern bei multiperspektivischen Entscheidungsfindungen

  • Francisco J. Santos-Arteaga
  • Debora Di Caprio
  • Madjid Tavana
Aufsatz

Zusammenfassung

In einer Welt mit einer zunehmenden Zahl von Entscheidungen müssen die Menschen die Informationen, die sie sich beschaffen, um fundierte Entscheidungen zu treffen, die sie zukünftig nicht bereuen, sorgfältig auswählen. Dies reicht von alltäglichen Entscheidungen bis zu solchen, die von Experten in der Wirtschaft getroffen werden. Die Autoren stellen einen neuartigen Informationsbeschaffungsalgorithmus vor, basierend auf dem Wert einer Information, der verhindert, dass ein Entscheidungsträger oder eine Entscheidungsträgerin seine bzw. ihre aktuelle Entscheidung später bedauert. Die wichtigsten Eigenschaften des Modells sind in der Lage, sowohl eine unterschiedliche Risikoeinstellung der Entscheidungsträger als auch ihr zukunftsgerichtetes Verhalten, ihre Fähigkeit, ausgewählte und durch unterschiedliche Eigenschaften gekennzeichnete Objekte (Projekte oder Produkte) zu beurteilen, sowie einen selbstregelnden Mechanismus für den Informationsbeschaffungsprozess zu berücksichtigen, auch bei Unkenntnis der Informationsbeschaffungskosten. Die Haupteigenschaften des Algorithmus werden numerisch untersucht.

Schlüsselwörter

Sequenzielle Informationsgewinnung Informationswert Auswahlbedauern Nutzentheorie 

A Self-regulating Information Acquisition Algorithm for Preventing Choice Regret in Multi-perspective Decision Making

Abstract

In a world filled with an increasing number of choices people must carefully select the information they acquire in order to make sound decisions that they will not regret in the future. This ranges from everyday life decisions to those made by experts in the business world. The authors introduce a novel information acquisition algorithm based on the value that information has when preventing a decision maker from regretting his or her current decision. The main features of the model include the capacity to account for different risk attitudes of the decision maker as well as his or her forward-looking behavior, the ability to assess choice objects (projects or products) defined by multiple characteristics and a self-regulation mechanism for the information acquisition process, even in the absence of information acquisition costs. The main properties of the algorithm are examined numerically.

Keywords

Sequential information acquisition Value of information Choice regret Utility theory 

Literatur

  1. Abbas AE, Bakır NO, Klutke GA, Sun Z (2013) Effects of risk aversion on the value of information in two-action decision problems. Decision Analysis 10(3):257–275 CrossRefGoogle Scholar
  2. Bakir NO, Klutke GA (2011) Information and preference reversals in lotteries. European Journal of Operational Research 210(3):752–756 CrossRefGoogle Scholar
  3. Carr N (2011) The shallows: what the Internet is doing to our brains. Norton, New York Google Scholar
  4. Chen YC, Shang RA, Kao CY (2009) The effects of information overload on consumers’ subjective state towards buying decision in the Internet shopping environment. Electronic Commerce Research and Applications 8(1):48–58 CrossRefGoogle Scholar
  5. Citroen CL (2011) The role of information in strategic decision-making. International Journal of Information Management 31(6):493–501 CrossRefGoogle Scholar
  6. Clemons EK (2008) How information changes consumer behavior and how consumer behavior determines corporate strategy. Journal of Management Information Systems 25(2):13–40 CrossRefGoogle Scholar
  7. de Bekker-Grob EW, Chorus CG (2013) Random regret-based discrete-choice modelling: an application to healthcare. Pharmacoeconomics 31(7):623–634 CrossRefGoogle Scholar
  8. Delquie P (2008) The value of information and intensity of preference. Decision Analysis 5(3):129–139 CrossRefGoogle Scholar
  9. Di Caprio D, Santos-Arteaga FJ (2009) An optimal information gathering algorithm. International Journal of Applied Decision Sciences 2(2):105–150 CrossRefGoogle Scholar
  10. Di Caprio D, Santos-Arteaga FJ (2011) Strategic diffusion of information and preference manipulation. International Journal of Strategic Decision Sciences 2(2):1–19 CrossRefGoogle Scholar
  11. Di Caprio D, Santos-Arteaga FJ, Tavana M (2013) The optimal sequential information acquisition structure: a rational utility-maximizing perspective. Applied Mathematical Modelling (im Druck). doi:10.1016/j.apm.2013.12.003 Google Scholar
  12. Frazier PI, Powell WB (2010) Paradoxes in learning and the marginal value of information. Decision Analysis 7(4):378–403 CrossRefGoogle Scholar
  13. Gefen D, Benbasat I, Pavlou PA (2008) A research agenda for trust in online environments. Journal of Management Information Systems 24(4):275–286 CrossRefGoogle Scholar
  14. Goodwin P, Wright G (2004) Decision analysis for management judgment, 3. Aufl. Wiley, New York Google Scholar
  15. Kahneman D, Tversky A (2000) Choices, values, and frames. Cambridge University Press, Cambridge Google Scholar
  16. Lancaster KJ (1966) A new approach to consumer theory. Journal of Political Economy 74(2):132–157 CrossRefGoogle Scholar
  17. Mackie SI, Begg SH, Smith C, Welsh MB (2007) Decision type-a key to realising the potential of decision making under uncertainty. APPEA Journal 47(1):309–319 Google Scholar
  18. Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic theory. Oxford University Press, New York Google Scholar
  19. Massey C, Robinson D, Kaniel R (2006) Can’t wait to look in the mirror: the impact of experience on better-than-average effect. In: Proc annual INFORM meeting, Pittsburgh Google Scholar
  20. McCall B, McCall J (2007) The economics of search, Bd 1. Routledge, London Google Scholar
  21. Medhurst J, Stanton IM, Bird H, Berry A (2009) The value of information to decision makers: an experimental approach using card-based decision gaming. Journal of the Operational Research Society 60(6):747–757 CrossRefGoogle Scholar
  22. Mintzberg M (1978) Patterns in strategy formulation. Management Science 24(9):934–948 CrossRefGoogle Scholar
  23. O’Reilly CA (1982) Variations in decision makers’ use of information sources: the impact of quality and accessibility of information. The Academy of Management Journal 25(4):756–771 CrossRefGoogle Scholar
  24. Ponssard JP (1976) On the concept of the value of information in competitive situations. Management Science 22(7):739–747 CrossRefGoogle Scholar
  25. Sandler T (1993) The economic-theory of alliances – a survey. Journal of Conflict Resolution 37(3):446–483 CrossRefGoogle Scholar
  26. Sarangee K, Schmidt JB, Wallman JP (2013) Clinging to slim chances: the dynamics of anticipating regret when developing new products. Journal of Product Innovation Management. doi:10.1111/jpim.12041 Google Scholar
  27. Schepanski A, Uecker WC (1984) The value of information in decision making. Journal of Economic Psychology 5(2):177–194 CrossRefGoogle Scholar
  28. Shepherd DA, Levesque M (2002) A search strategy for assessing a business opportunity. IEEE Transactions on Engineering Management 49(2):140–154 CrossRefGoogle Scholar
  29. Smith JE, Ulu C (2012) Technology adoption with uncertain future costs and quality. Operations Research 60(2):262–274 CrossRefGoogle Scholar
  30. Srikanth M, Kesavan HK, Roe P (2003) Computation of the MinMax measure. In: Karmeshu (Hrsg) Entropy measures, maximum entropy principle and emerging applications. Studies in fuzziness and soft computing, Bd 119. Springer, Heidelberg, S 239–251 CrossRefGoogle Scholar
  31. Ulu C, Smith JE (2009) Uncertainty, information acquisition, and technology adoption. Operations Research 57(3):740–752 CrossRefGoogle Scholar
  32. Vilkkumaa E, Liesiö J, Salo A (2014) Optimal strategies for selecting project portfolios using uncertain value estimates. European Journal of Operational Research 233(3):772–783 CrossRefGoogle Scholar
  33. Wakker P (1989) Additive representations of preferences: a new foundation of decision analysis. Kluwer Academic, Dordrecht CrossRefGoogle Scholar
  34. Williams TM, Samset K, Sunnevåg KJ (2009) Making essential choices with scant information. Palgrave Macmillan, Basingstoke CrossRefGoogle Scholar
  35. Xianzhong D, Xu M, Kaye GR (2002) Knowledge workers for information support: executives’ perceptions and problems. Information Systems Management 19(1):81–88 CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • Francisco J. Santos-Arteaga
    • 1
  • Debora Di Caprio
    • 2
    • 3
  • Madjid Tavana
    • 4
    • 5
  1. 1.Departamento de Economía Aplicada II und Instituto Complutense de Estudios InternacionalesUniversidad Complutense de MadridPozueloSpanien
  2. 2.Department of Mathematics and StatisticsYork UniversityTorontoKanada
  3. 3.Polo Tecnologico IISS G. GalileiBolzanoItalien
  4. 4.Business Systems and Analytics Department, Lindback Distinguished Chair of Information Systems and Decision SciencesLa Salle UniversityPhiladelphiaUSA
  5. 5.Business Information Systems Department, Faculty of Business Administration and EconomicsUniversity of PaderbornPaderbornDeutschland

Personalised recommendations