Advertisement

WIRTSCHAFTSINFORMATIK

, Volume 51, Issue 5, pp 398–413 | Cite as

Koordination in Service Value Networks

Ein Mechanism-Design-Ansatz
  • Benjamin Blau
  • Clemens van Dinther
  • Tobias Conte
  • Yongchun Xu
  • Christof Weinhardt
WI – Aufsatz

Zusammenfassung

Der grundlegende Paradigmenwechsel von traditionellen Wertschöpfungsketten zu agilen, dienstbasierten Wertschöpfungsnetzwerken impliziert neue wirtschaftliche und organisatorische Herausforderungen. Ähnlich wie Koordinierungsmechanismen haben sich Auktionen in Situationen bewährt, in denen heterogene und immaterielle Güter gehandelt werden. Allerdings sind traditionelle Ansätze auf dem Gebiet der multidimensionalen kombinatorischen Auktionen nicht gut geeignet, um den Handel mit komponierten Diensten zu ermöglichen. Eine fehlerfreie Ausführung der Dienste und die damit verbundene Bewertung des Dienstnehmers hängen in hohem Maße von der genauen Reihenfolge der Teile der Komposition ab. Dies bedeutet, dass, im Gegensatz zu Dienstbündeln, zusammengesetzte Dienste nur durch eine gültige Reihenfolge ihrer Komponenten Wert generieren.

Der Beitrag stellt ein abstraktes Modell als eine Formalisierung von SVNs vor. Das Modell umfasst die Implementierung eines graphenbasierten Mechanismus zur Allokation multidimensionaler Dienstangebote innerhalb des Netzwerks, zur Sanktionierung für die Nichterbringung und der Bestimmung von Preisen für komplexe Dienste. Der Mechanismus und die Gebotssprache unterstützen verschiedene Arten von QoS-Eigenschaften und deren (semantische) Aggregation. Die Autoren zeigen analytisch, dass diese Variante in Bezug auf alle Dimensionen des Dienstangebots (Qualität und Preis) anreizkompatibel ist. Auf der Grundlage dieser Ergebnisse wird eine numerische Analyse des strategischen Verhaltens der beteiligten Dienstanbieter in Bezug auf mögliche Kollusionsstrategien durchgeführt.

Schlüsselwörter

Mechanism Design Koordination Service Value Network Beschaffungsauktion Semantik 

How to Coordinate Value Generation in Service Networks – A Mechanism Design Approach

Abstract

The fundamental paradigm shift from traditional value chains to agile service value networks implies new economic and organizational challenges. As coordination mechanisms, auctions have proven to perform quite well in situations where intangible and heterogeneous goods are traded. Nevertheless, traditional approaches in the area of multidimensional combinatorial auctions are not quite suitable to enable the trade of composite services. A flawless service execution and therefore the requester’s valuation highly depends on the accurate sequence of the functional parts of the composition, meaning that in contrary to service bundles, composite services only generate value through a valid order of their components. The authors present an abstract model as a formalization of service value networks. The model comprehends a graph-based mechanism implementation to allocate multidimensional service offers within the network, to impose penalties for non-performance and to determine prices for complex services. The mechanism and the bidding language support various types of QoS attributes and their (semantic) aggregation. It is analytically shown that this variant is incentive compatible with respect to all dimensions of the service offer (quality and price). Based on these results, the authors numerically analyze strategic behavior of participating service providers regarding possible collusion strategies.

Keywords

Mechanism design Coordination Service value network Procurement auction Semantics 

Literatur

  1. Archer A, Tardos E (2007) Frugal path mechanisms. In: Proceedings of the 13th annual ACM-SIAM symposium on discrete algorithms, S. 991–999Google Scholar
  2. Asker J, Cantillon E (2008) Properties of scoring auctions. The RAND Journal of Economics 39(1):69–85Google Scholar
  3. Athey S, Bagwell K (2001) Optimal collusion with private information. RAND Journal of Economics 32(3):428–465CrossRefGoogle Scholar
  4. Bichler M, Kalagnanam J (2005) Configurable offers and winner determination in multi-attribute auctions. European Journal of Operational Research 160(2):380–394CrossRefGoogle Scholar
  5. Bichler M, Pikovsky A, Setzer T (2005) Kombinatorische Auktionen in der betrieblichen Beschaffung. Eine Analyse grundlegender Entwurfsprobleme. WIRTSCHAFTSINFORMATIK 47(2):126–134Google Scholar
  6. Blau B, Block C, Stößer J (2008a) How to trade services? Current status and open questions. In: Proceedings of the international conference on group decision and negotiation (GDN), S. 159–160Google Scholar
  7. Blau B, Lamparter S, Neumann D, Weinhardt C (2008b) Planning and pricing of service mashups. In: Proceedings of the IEEE joint conference on e-commerce technology (CEC’08) and enterprise computing, e-commerce and e-services (EEE ‘08). Washington, DC, S. 19–26Google Scholar
  8. Branco F (1997) The design of multidimensional auctions. RAND Journal of Economics 28(1):63–81CrossRefGoogle Scholar
  9. Che YK (1993) Design competition through multidimensional auctions. RAND Journal of Economics 24(4):668–668CrossRefGoogle Scholar
  10. Clarke EH (1971) Multipart pricing of public goods. Public Choice 11(1):17–33CrossRefGoogle Scholar
  11. Engel Y, Wellman MP, Lochner KM (2006) Bid expressiveness and clearing algorithms in multiattribute double auctions. In: Proceedings of the 7th ACM conference on electronic commerce. ACM Press, New York, S. 110–119Google Scholar
  12. Feigenbaum J, Ramachandran V, Schapira M (2006) Incentive-compatible interdomain routing. In: Proceedings of the 7th ACM conference on electronic commerce, S. 130–139Google Scholar
  13. Feldman M, Chuang J, Stoica I, Shenker S (2005) Hidden-action in multi-hop routing. In: Proceedings of the 6th ACM conference on electronic commerce, S. 117–126Google Scholar
  14. Groves T (1973) Incentives in teams. Econometrica 41(4):617–631CrossRefGoogle Scholar
  15. Hagel J III (1996) Spider versus Spider. The McKinsey Quarterly (1):71–80Google Scholar
  16. Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Transactions on Software Engineering and Methodology 5(4):293–333CrossRefGoogle Scholar
  17. Hershberger J, Suri S (2001) Vickrey prices and shortest paths: what is an edge worth? In: Proceedings 42nd IEEE symposium on foundations of computer science, S. 252–259Google Scholar
  18. Kimbrough SO, Lu M, Murphy F (2004) Learning and tacit collusion by artificial agents in Cournot duopoly games. In: Formal Modelling in Electronic Commerce. Springer, Heidelberg, S. 477–492Google Scholar
  19. Lamparter S, Ankolekar A, Studer R, Grimm S (2007) Preference-based selection of highly configurable web services. In: Proceedings of the 16th international conference on world wide web, S. 1013–1022Google Scholar
  20. Maille P, Tuffin B (2007) Why VCG auctions can hardly be applied to the pricing of inter-domain and ad hoc networks. In: 3rd EuroNGI conference on next generation internet networks, S. 36–39Google Scholar
  21. Müller R, Perea A, Wolf S (2007) Combinatorial Scoring Auctions, Research Memoranda No. 020, Universiteit MaastrichtGoogle Scholar
  22. Nisan N, Ronen A (2001) Algorithmic mechanism design. Games and Economic Behavior 35:166–196CrossRefGoogle Scholar
  23. Nisan N, Ronen A (2007) Computationally feasible VCG mechanisms. Journal of Artificial Intelligence Research 29:19–47Google Scholar
  24. Papadimitriou C (2001) Algorithms, games, and the internet. In: Proceedings of the thirty-third annual ACM symposium on theory of computing, S. 749–753Google Scholar
  25. Parkes D, Kalagnanam J (2002) Iterative multiattribute vickrey auctions. Technical report, Harvard University, BostonGoogle Scholar
  26. Parkes DC, Kalagnanam J (2005) Models for Iterative multiattribute procurement auctions. Management Science 51(3):435–451CrossRefGoogle Scholar
  27. Parkes DC, Kalagnanam J, Eso M (2001) Achieving budget-balance with Vickrey-based payment schemes in combinatorial exchanges. IBM Research Report RC 22218Google Scholar
  28. Ronen A (2001) On approximating optimal auctions.In: Proceedings of the 3rd ACM conference on electronic commerce, S. 11–17Google Scholar
  29. Ronen A, Lehmann D (2005) Nearly optimal multi attribute auctions. In: Proceedings of the 6th ACM conference on electronic commerce, S. 279–285Google Scholar
  30. Salle M, Bartolini C (2004) Management by contract. In: Network operations and management symposium, NOMS 2004. IEEE/IFIP, S. 787–800Google Scholar
  31. Tapscott D, Lowy A, Ticoll D (2000) Digital capital: harnessing the power of business webs. Harvard Business School Press, BostonGoogle Scholar
  32. van Dinther C (2007) Adaptive bidding in single-sided auctions under uncertainty: an agent-based approach in market engineering. Birkhäuser, BaselGoogle Scholar
  33. Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance 16(1):8–37CrossRefGoogle Scholar
  34. Weinhardt C, Holtmann C, Neumann D (2003) Market-Engineering. WIRTSCHAFTSINFORMATIK 45(6):635–640Google Scholar
  35. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng Q Z (2003) Quality driven web services composition. In: Proceedings of the 12th international conference on world wide web, S. 411–421Google Scholar
  36. Zerdick A, Picot A, Schrape K, Artopé A, Goldhammer K, Lange UT, Vierkant E, López-Escobar E, Silvertone R (2000) E-economics. Strategies for the digital marketplace. Springer, HeidelbergGoogle Scholar
  37. Zerdick A, Picot A, Schrape K, Steiner F (2004) Formation and early growth of business webs: modular product systems in network markets. Physica, HeidelbergGoogle Scholar

Copyright information

© Gabler Verlag 2009

Authors and Affiliations

  • Benjamin Blau
    • 1
  • Clemens van Dinther
    • 2
  • Tobias Conte
    • 2
  • Yongchun Xu
    • 2
  • Christof Weinhardt
    • 1
  1. 1.Institute of Information Systems and Management (IISM)Universität Karlsruhe (TH)KarlsruheDeutschland
  2. 2.Research Center for Information Technology (FZI)KarlsruheDeutschland

Personalised recommendations