WIRTSCHAFTSINFORMATIK

, Volume 51, Issue 1, pp 130–138 | Cite as

Kombinatorische Auktionen in der betrieblichen BeschaffungEine Analyse grundlegender Entwurfsprobleme – An Analysis of Design Problems in Combinatorial Procurement Auctions

  • Martin Bichler
  • Alexander Pikovsky
  • Thomas Setzer
WI – State of the Art

Zusammenfassung

Traditionelle Auktionsverfahren sind auf reine Preisverhandlungen mit einfachen, standardisierten Gütern beschränkt. Kombinatorische Auktionen ermöglichen die Abgabe von Bündelgeboten und dadurch die effiziente Durchführung von Verhandlungen über mehrere Güter. Der Einsatz in der betrieblichen Beschaffung ist durch eine Reihe von Besonderheiten gekennzeichnet:
  • Die Auswahl der Gewinner führt zu Optimierungsproblemen, bei denen in der Beschaffung zahlreiche betriebswirtschaftlich motivierte Nebenbedingungen beachtet werden müssen.

  • Iterative Verfahren sind aus mehreren Gründen die am weitesten verbreiteten Auktionsformate in der Beschaffung.

  • Die unterschiedlichen Güter, die in der betrieblichen Praxis beschafft werden, erfordern eine Vielfalt von Gebotstypen zur Berücksichtigung qualitativer Attribute oder von Mengenrabatten, die bisher noch wenig untersucht wurden.

In diesem Beitrag sollen grundlegende Entwurfsprobleme Kombinatorischer Auktionen charakterisiert und Besonderheiten bei Anwendungen in der betrieblichen Beschaffung diskutiert werden.

Dieser Beitrag, ausgewählt für die Kategorie „Beste Beiträge von 1959 bis 2008“, wurde zuerst in WIRTSCHAFTSINFORMATIK 47(2)2005:126–134 veröffentlicht. Rechtschreibung und Zitierweise wurden an den aktuellen Stand angepasst.

Stichworte

Kombinatorische Auktion Mehrdimensionale Auktion Betriebliche Beschaffung Kombinatorische Optimierung 

Abstract

Traditional auction mechanisms support price negotiations on a single item. The Internet allows for the exchange of much more complex offers in real-time. This is one of the reasons for much research on multidimensional auction mechanisms allowing negotiations on multiple items, multiple units, or multiple attributes of an item, as they can be regularly found in procurement. Combinatorial auctions, for example, enable suppliers to submit bids on bundles of items. A number of laboratory experiments has shown high allocative efficiency in markets with economies of scope. For suppliers it is easier to express cost savings due to bundling (e. g., decreased transportation or production costs). This can lead to significant savings in total cost of the procurement manager. Procurement negotiations exhibit a number of particularities:
  • It is often necessary to consider qualitative attributes or volume discounts in bundle bids. These complex bid types have not been sufficiently analyzed.

  • The winner determination problem requires the consideration of a number of additional business constraints, such as limits on the spend on a particular supplier or the number of suppliers.

  • Iterative combinatorial auctions have a number of advantages in practical applications, but they also lead to new problems in the determination of ask prices.

In this paper, we will discuss fundamental problems in the design of combinatorial auctions and the particularities of procurement applications.

Reprint of an article from WIRTSCHAFTSINFORMATIK 47(2)2005:126–134.

Keywords

Combinatorial Auction Multidimensional Auction Procurement Combinatorial Optimization 

Literatur

  1. Ausubel L, Cramton P, Milgrom P (2003) A practical combinatorial auction: The clock-proxy auction. Working paper, Stanford UniversityGoogle Scholar
  2. Ausubel L, Milgrom P (2002) Ascending auctions with package bidding. Working paper, University of MarylandGoogle Scholar
  3. Banks J, Ledyard JO, Porter D (1989) Allocating uncertain and unresponsive resources: an experimental approach. RAND Journal of Economics 20:1–25CrossRefGoogle Scholar
  4. Beall S, Carter C, Carter PL et al (2003) The role of reverse auctions in strategic sourcing. Center for Advanced Purchasing StudiesGoogle Scholar
  5. Bichler M (2000) An experimental analysis of multi-attribute auctions. Decision Support Systems 28(3)Google Scholar
  6. Bichler M (2001) The future of e-markets: multi-dimensional market mechanisms. Cambridge University Press, CambridgeGoogle Scholar
  7. Bichler M, Kalagnanam J (2005) Configurable offers and winner determination in multi-attribute auctions. European Journal of Operational ResearchGoogle Scholar
  8. Bichler M, Kalagnanam J, Kaircioglu K et al (2002) Applications of flexible pricing in business-to-business electronic commerce. IBM Systems Journal 41(2)Google Scholar
  9. Bichler M, Klimesch R (2000) Simulation multivariater Auktionen – eine Analyse des Handels mit Finanzderivaten. Wirtschaftsinformatik 42(3)Google Scholar
  10. Bichler M, Kaukal M, Segev A (1999) Multi-attribute auctions for electronic procurement. In: First IBM IAC workshop on internet based negotiation technologies, Yorktown HeightsGoogle Scholar
  11. Bikhchandani S, Ostroy J (2001) The package assignment model. UCLAGoogle Scholar
  12. Branco F (1997) The design of multidimensional auctions. RAND Journal of Economics 28(1):63–81CrossRefGoogle Scholar
  13. Brandt F (2003) Fully private auctions in a constant number of rounds. In: Wright RN (Hrsg) Financial Cryptography, Springer, Heidelberg, S 223–238Google Scholar
  14. Brewer PJ, Plott CR (1996) A binary conflict ascending price (BICAP) mechanism for the decentralized allocation of the right to use railroad tracks. International Journal of Industrial Organization 14(6):857–886CrossRefGoogle Scholar
  15. Che YK (1993) Design competition through multidimensional auctions. RAND Journal of Economics 24(4)Google Scholar
  16. Conen W, Sandholm T (2001) Preference elicitation in combinatorial auctions. ACM Conference on Electronic Commerce, Tampa, S 256–259Google Scholar
  17. Cramton P (1998) Ascending auctions. European Economic Review 42(3–5):745–756Google Scholar
  18. Cramton P, Shoham Y, Steinberg R (Hrsg) (2005) Combinatorial auctions. MIT PressGoogle Scholar
  19. Davenport A, Kalagnanam J (2000) Price negotiations for procurement of direct inputs. Workshop report, IMA hot topics workshop: mathematics of the internet: e-auction and marketsGoogle Scholar
  20. DeMartini C, Kwasinak T, Ledyard JO, Porter D (2002) A new and improved design for multi-object iterative auctions. Social Science Working Paper 1054, California Institute of TechnologyGoogle Scholar
  21. Elmaghraby W, Keskinocak P (2002) Combinatorial auctions in procurement. Georgia TechGoogle Scholar
  22. Epstein R, Henriquez L, Catalan J, Weintraub GY, Martinez C (2002) A combinatorial auction improves school meals in Chile. Interfaces 32(6)Google Scholar
  23. Ewerhart C, Moldovanu B (2003) The German UMTS design: insights from multi-object auction theory. In: Illing G (Hrsg) Spectrum auction and competition in telecommunications. MIT PressGoogle Scholar
  24. Fujishima Y, Leyton-Brown K, Shoham Y (1999) Taming the computational complexity of combinatorial Auctions: optimal and approximate approaches. International joint conference on artificial intelligence (IJCAI), StockholmGoogle Scholar
  25. Groves T (1973) Incentives in teams. Econometrica 41:617–631CrossRefGoogle Scholar
  26. Hannon D (2004) GSK closes the loop using e-sourcing tools. Purchasing Magazine, http://www.purchasing.com/article/CA422096.html. Abruf am 2004-07-28Google Scholar
  27. Hohner G, Rich J, Reid G, Davenport A, Kalagnanam J, Lee JH, An C (2003) Combinatorial and quantity-discount procurement auctions benefit mars incorporated and its suppliers. InterfacesGoogle Scholar
  28. Isaac MR, James D (2000) Robustness of the incentive compatible combinatorial auction. Experimental Economics 3(1)Google Scholar
  29. Jackson MO (2000) Mechanism theory. The Encyclopedia of Life Support Systems, EOLSS PublishersGoogle Scholar
  30. Kalagnanam J, Bichler M, Davenport A, Hohner G (2005) Industrial procurement auctions. In: Cramton P, Shoam Y, Steinberg R (Hrsg) Combinatorial Auctions, MIT PressGoogle Scholar
  31. Kagel J (1995) Auctions – a survey of experimental research. In: Kagel J, Roth A (Hrsg) The Handbook of Experimental Economics, Princeton University Press, S 501–585Google Scholar
  32. Klemperer P (1999) Auction theory: a guide to the literature. Journal of Economic Surveys 13(3):227–286CrossRefGoogle Scholar
  33. Koboldt C, Maldoom D, Marsden R (2003) The first combinatorial spectrum auction. Discussion Paper 03/01, EconGoogle Scholar
  34. Krishna V, Rosenthal R (1996) Simultanous auctions with synergies. Games and Economic Behavior 17:1–31CrossRefGoogle Scholar
  35. Kwasinak T, Ledyard JO, Porter D, DeMartini C (2003) A new and improved design for multi-objective iterative auctions. Management ScienceGoogle Scholar
  36. Ledyard JO, Olson M, Porter D, Swanson JA, Torma DP (2001) The first use of a combined value auction for transportation services. InterfacesGoogle Scholar
  37. McAfee R, McMillan PJ (1987) Auctions and bidding. Journal of Economic Literature 25:699–738Google Scholar
  38. McMillan J (1994) Selling spectrum rights. Journal of Economic Perspectives 8(3):145–162Google Scholar
  39. Milgrom P (2000) Putting auction theory to work: the simultaneous ascending auction. Journal of Political Economy 108(21):245–272CrossRefGoogle Scholar
  40. Milgrom PR, Weber RJ (1982) A theory of auctions and competitive bidding. Econometrica 50:1089–1122CrossRefGoogle Scholar
  41. Myerson RB, Satterthwaite MA (1983) Efficient mechanisms for bilateral trade. Journal of Economic Theory 29:265–281CrossRefGoogle Scholar
  42. Nemhauser G, Wolsey L (1988) Integer and combinatorial optimization. Wile, ChichesterGoogle Scholar
  43. Nisan N (2000) Bidding and allocations in combinatorial auctions. ACM conference on electronic commerce (EC-2000), MinneapolisGoogle Scholar
  44. Nisan N, Segal I (2002) The communication complexity of efficient allocation problems. Hebrew UniversityGoogle Scholar
  45. Parkes DC (1999) iBundle: an efficient ascending price bundle auction. ACM conference on electronic commerce, Denver, S 148–157Google Scholar
  46. Parkes DC, Ungar LH (2000) Preventing strategic manipulation in iterative auctions: proxy-agents and price-adjustment. 17th national conference on artificial intelligence (AAAI-00)Google Scholar
  47. Pikovsky A, Bichler M (2005) Information feedback and decision support in iterative combinatorial auctions. Konferenz Wirtschaftsinformatik (WI 2005), Springer, HeidelbergGoogle Scholar
  48. Porter D, Rassenti S, Roopnarine A, Smith V (2003) Combinatorial auction design. Proceedings of the National Academy of Sciences of the United States of America (PNAS)Google Scholar
  49. Rassenti SJ, Smith V, Bulfin RL (1982) A combinatorial auction mechanism for airport time slot allocation. Bell Journal of Economics 13:402–417CrossRefGoogle Scholar
  50. Robinson MS (1985) Collusion and the choice of auction. Rand Journal of Economics 16:141–145CrossRefGoogle Scholar
  51. Rothkopf MH, Pekec A (1998) Computationally manageable combinatorial auctions. Maryland auction conference, MarylandGoogle Scholar
  52. Sandholm T (1999) Approaches to winner determination in combinatorial auctions. Decision Support Systems 28(1):165–176CrossRefGoogle Scholar
  53. Strecker S (2003) Preference revelation in multi-attribute reverse English auctions: a laboratory study. International conference on information systems (ICIS), SeattleGoogle Scholar
  54. Vickrey W (1961) Counterspeculation, auctions and competitive sealed tenders. Journal of Finance 16(1):8–37CrossRefGoogle Scholar
  55. de Vries S, Schummer J, Vohra R (2003) On ascending vickrey auctions for heterogeneous objects. FCC combinatorial bidding conferenceGoogle Scholar
  56. de Vries S, Vohra R (2003) Combinatorial auctions: a survey. INFORMS Journal of Computing 15(3):284–309CrossRefGoogle Scholar
  57. Weinhardt C, Gomber P, Schmidt C (1999) Pricing in multi-agent systems for transportation planning. Journal of Organizational Computing and Electronic CommerceGoogle Scholar
  58. Weinhardt C, Holtmann C, Neumann D (2003) Market engineering. WIRTSCHAFTSINFORMATIK 45(6)Google Scholar
  59. Wolfstetter E (1996) Auctions: an introduction. Journal of Economic Surveys 10(4):367–420CrossRefGoogle Scholar
  60. Wurman P, Wellman MP (2000) Akba: a progressive, anonymous-price combinatorial auction. ACM conference on electronic commerce, Minneapolis, S 21–29Google Scholar

Copyright information

© Gabler Verlag 2009

Authors and Affiliations

  • Martin Bichler
    • 1
  • Alexander Pikovsky
    • 1
  • Thomas Setzer
    • 1
  1. 1.Fakultät für Informatik (I18), Lehrstuhl für Internetbasierte GeschäftssystemeTU MünchenGarching/MünchenDeutschland

Personalised recommendations