Advertisement

An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices

  • Matthias Gerhard Wichmann
  • Christoph Johannes
  • Thomas Stefan Spengler
Original Article
  • 45 Downloads

Abstract

The demand for electrical power in industrial production processes often leads to increasing energy costs for companies. In the course of a more sustainable power generation in the future, companies are faced with time-dependent energy prices, which have the potential to influence energy costs significantly. In order to manufacture the products at minimal decision-relevant total costs, planning approaches for production scheduling have to consider energy costs. To date, time-dependent energy prices are only considered in few production planning approaches in the field of job-shop scheduling and in some individual planning approaches in the field of simultaneous lot-sizing and scheduling. Up to now, a general model formulation for the consideration of time-dependent energy prices in lot-sizing and scheduling and an investigation of appropriate conditions for an energy-oriented production planning is missing. In this contribution, the energy-oriented general lot-sizing and scheduling problem is introduced as an extension of the respected general lot-sizing and scheduling problem. The cost saving potential is analyzed by considering energy in the lot-sizing and scheduling problem compared to classical planning approaches and appropriate frame conditions are investigated within a structured parameter analysis. In the numerical study, this leads to a total cost saving potential about 1.04% and an energy cost saving potential about 9.69%. In particular, a high volatility of the energy prices and a direct transfer of this volatility in form of short periods of constant energy prices increase this cost saving potential.

Keywords

Energy-oriented production planning Lot-sizing and scheduling Time-dependent energy prices MIP 

JEL Classification

L60 

References

  1. Biel K, Glock CH (2016a) On the use of waste heat in a two-stage production system with controllable production rates. Int J Prod Econ.  https://doi.org/10.1016/j.ijpe.2016.07.001 CrossRefGoogle Scholar
  2. Biel K, Glock CH (2016b) Systematic literature review of decision support models for energy-efficient production planning. Comput Ind Eng 101:243–259.  https://doi.org/10.1016/j.cie.2016.08.021 CrossRefGoogle Scholar
  3. Biel K, Zhao F, Sutherland JW, Glock CH (2017) Flow shop scheduling with grid-integrated onsite wind power using stochastic MILP. Int J Prod Res.  https://doi.org/10.1080/00207543.2017.1351638 CrossRefGoogle Scholar
  4. BMWi (2015) Ein Strommarkt für die Energiewende: Ergebnispapier des Bundesministeriums für Wirtschaft und Energie (Weißbuch)Google Scholar
  5. Che A, Zeng Y, Lyu K (2016) An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs. J Clean Prod 129:565–577.  https://doi.org/10.1016/j.jclepro.2016.03.150 CrossRefGoogle Scholar
  6. Copil K, Wörbelauer M, Meyr H, Tempelmeier H (2017) Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spectr 39(1):1–64.  https://doi.org/10.1007/s00291-015-0429-4 CrossRefGoogle Scholar
  7. Ding J-Y, Song S, Wu C (2016) Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur J Oper Res 248(3):758–771.  https://doi.org/10.1016/j.ejor.2015.05.019 CrossRefGoogle Scholar
  8. Drexl A, Haase K (1995) Proportional lotsizing and scheduling. Int J Prod Econ 40(1):73–87.  https://doi.org/10.1016/0925-5273(95)00040-U CrossRefGoogle Scholar
  9. EEX (2017) Power products offered at EEX and EEX spot. https://www.eex.com/de/produkte/strom. Accessed 04 Dec 2017
  10. Energy charts (2016) Electricity production and spot prices in week 31 2016. https://www.energy-charts.de/price.htm. Accessed 26 Oct 2017
  11. Energy charts (2017) Electricity production and spot prices in week 7 2017. https://www.energy-charts.de/price.htm. Accessed 26 Oct 2017
  12. Fernandez M, Li L, Sun Z (2013) “Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems. Int J Prod Econ 146(1):178–184.  https://doi.org/10.1016/j.ijpe.2013.06.020 CrossRefGoogle Scholar
  13. Fleischmann B (1990) The discrete lot-sizing and scheduling problem. Eur J Oper Res 44(3):337–348.  https://doi.org/10.1016/0377-2217(90)90245-7 CrossRefGoogle Scholar
  14. Fleischmann B, Meyr H (1997) The general lotsizing and scheduling problem. OR Spectr 19(1):11–21.  https://doi.org/10.1007/BF01539800 CrossRefGoogle Scholar
  15. Gahm C, Denz F, Dirr M, Tuma A (2016) Energy-efficient scheduling in manufacturing companies: a review and research framework. Eur J Oper Res 248(3):744–757.  https://doi.org/10.1016/j.ejor.2015.07.017 CrossRefGoogle Scholar
  16. Haase K (1996) Capacitated lot-sizing with sequence dependent setup costs. OR Spectr 18(1):51–59.  https://doi.org/10.1007/BF01539882 CrossRefGoogle Scholar
  17. Industrieverband Massivumformung e.V. (2015) Handbuch MassivumformungGoogle Scholar
  18. Johannes C, Wichmann MG, Spengler TS (2016) Flexible production scheduling with volatile energy rates. In: Fink A, Fügenschuh A, Geiger MJ (eds) Operations research proceedings 2016—international conference on operations research. Springer, Cham, pp 489–495Google Scholar
  19. Karmarkar US, Schrage LE (1985) The deterministic dynamic product cycling problem. Oper Res J Oper Res Soc Am 33:326Google Scholar
  20. Lee S, Do Chung B, Jeon HW, Chang J (2017) A dynamic control approach for energy-efficient production scheduling on a single machine under time-varying electricity pricing. J Clean Prod 165:552–563.  https://doi.org/10.1016/j.jclepro.2017.07.102 CrossRefGoogle Scholar
  21. Liu Y, Dong H, Lohse N, Petrovic S, Gindy N (2014) An investigation into minimising total energy consumption and total weighted tardiness in job shops. J Clean Prod 65:87–96.  https://doi.org/10.1016/j.jclepro.2013.07.060 CrossRefGoogle Scholar
  22. Liu Y, Dong H, Lohse N, Petrovic S (2015) Reducing environmental impact of production during a Rolling Blackout policy—a multi-objective schedule optimisation approach. J Clean Prod 102:418–427.  https://doi.org/10.1016/j.jclepro.2015.04.038 CrossRefGoogle Scholar
  23. Liu Y, Dong H, Lohse N, Petrovic S (2016) A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. Int J Prod Econ 179:259–272.  https://doi.org/10.1016/j.ijpe.2016.06.019 CrossRefGoogle Scholar
  24. Luo H, Du B, Huang GQ, Chen H, Li X (2013) Hybrid flow shop scheduling considering machine electricity consumption cost. Int J Prod Econ 146(2):423–439.  https://doi.org/10.1016/j.ijpe.2013.01.028 CrossRefGoogle Scholar
  25. Maes J, Van Wassenhove L (1988) Multi-item single-level capacitated dynamic lot-sizing heuristics: a general review. J Oper Res Soc 39(11):991–1004CrossRefGoogle Scholar
  26. Mansouri SA, Aktas E, Besikci U (2016) Green scheduling of a two-machine flowshop: trade-off between makespan and energy consumption. Eur J Oper Res 248(3):772–788.  https://doi.org/10.1016/j.ejor.2015.08.064 CrossRefGoogle Scholar
  27. Masmoudi O, Yalaoui A, Ouazene Y, Chehade H (2016) Multi-item capacitated lot-sizing problem in a flow-shop system with energy consideration. IFAC-PapersOnLine 49(12):301–306.  https://doi.org/10.1016/j.ifacol.2016.07.621 CrossRefGoogle Scholar
  28. Masmoudi O, Yalaoui A, Ouazene Y, Chehade H (2017) Lot-sizing in a multi-stage flow line production system with energy consideration. Am Inst Ind Eng Soc Manuf Eng 55(5/6):1640–1663Google Scholar
  29. Matthes FC, Greiner B, Neuhoff K, Petrick S, Ritter N, Cook V (2016) EKI—Der Energiekostenindex für die deutsche Industrie. Öko-Institut, BerlinGoogle Scholar
  30. May G, Stahl B, Taisch M, Prabhu V (2015) Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int J Prod Res 53(23):7071–7089.  https://doi.org/10.1080/00207543.2015.1005248 CrossRefGoogle Scholar
  31. Menezes AA, Clark A, Almada-Lobo B (2011) Capacitated lot-sizing and scheduling with sequence-dependent, period-overlapping and non-triangular setups. J Sched 14(2):209–219.  https://doi.org/10.1007/s10951-010-0197-6 CrossRefGoogle Scholar
  32. Metallumform GmbH (2017) Precision components for the automotive industry. http://www.metallumform.com/produkte/getriebe.html. Accessed 26 Oct 2017
  33. Meyr H (1999) Simultane Losgrößen- und Reihenfolgeplanung für kontinuierliche Produktionslinien: Modelle und Methoden im Rahmen des Supply Chain Management. Deutscher Universitätsverlag, WiesbadenCrossRefGoogle Scholar
  34. Moon J-Y, Park J (2014) Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. Int J Prod Res 52(13):3922–3939.  https://doi.org/10.1080/00207543.2013.860251 CrossRefGoogle Scholar
  35. Mouzon G, Yildirim MB (2008) A framework to minimise total energy consumption and total tardiness on a single machine. Int J Sustain Eng 1(2):105–116.  https://doi.org/10.1080/19397030802257236 CrossRefGoogle Scholar
  36. Mouzon G, Yildirim MB, Twomey J (2007) Operational methods for minimization of energy consumption of manufacturing equipment. Int J Prod Res 45(18–19):4247–4271.  https://doi.org/10.1080/00207540701450013 CrossRefGoogle Scholar
  37. Nolde K, Morari M (2010) Electrical load tracking scheduling of a steel plant. Comput Chem Eng 34(11):1899–1903.  https://doi.org/10.1016/j.compchemeng.2010.01.011 CrossRefGoogle Scholar
  38. Posselt G (2016) Towards energy transparent factories, 1st edn. Springer, New York, p 284CrossRefGoogle Scholar
  39. Rager M, Gahm C, Denz F (2015) Energy-oriented scheduling based on evolutionary algorithms. Comput Oper Res 54:218–231.  https://doi.org/10.1016/j.cor.2014.05.002 CrossRefGoogle Scholar
  40. Rogers JD (1958) A computational approach to the economic lot scheduling problem. Manag Sci 4(3):264–291.  https://doi.org/10.1287/mnsc.4.3.264 CrossRefGoogle Scholar
  41. Seeanner F, Meyr H (2013) Multi-stage simultaneous lot-sizing and scheduling for flow line production. OR Spectr 35(1):33–73.  https://doi.org/10.1007/s00291-012-0296-1 CrossRefGoogle Scholar
  42. Shrouf F, Ordieres-Meré J, García-Sánchez A, Ortega-Mier M (2014) Optimizing the production scheduling of a single machine to minimize total energy consumption costs. J Clean Prod 67:197–207.  https://doi.org/10.1016/j.jclepro.2013.12.024 CrossRefGoogle Scholar
  43. Stadtler H (2011) Multi-level single machine lot-sizing and scheduling with zero lead times. OR Spectr 209(241–252):S037722171000620XGoogle Scholar
  44. Suerie C (2006) Modeling of period overlapping setup times. Eur J Oper Res 174(2):874–886.  https://doi.org/10.1016/j.ejor.2005.03.033 CrossRefGoogle Scholar
  45. Zanoni S, Bettoni L, Glock CH (2014) Energy implications in a two-stage production system with controllable production rates. Int J Prod Econ 149:164–171.  https://doi.org/10.1016/j.ijpe.2013.06.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technische Universität Braunschweig, Institute of Automotive Management and Industrial Production, Chair of Production and LogisticsBrunswickGermany

Personalised recommendations