Journal of Business Economics

, Volume 89, Issue 7, pp 793–821 | Cite as

Energy vehicle routing problem for differently sized and powered vehicles

  • Herbert Kopfer
  • Benedikt VornhusenEmail author
Original Paper


Electric vehicles (EVs) and combustion-powered vehicles (CVs) differ substantially with respect to several characteristic factors that have major impacts on vehicle routing. EVs are more energy efficient than CVs, but they have a shorter driving range, and compared to CVs with the same gross weight, they have a lower payload. In this paper, various vehicle fleets with differently sized EVs and CVs are considered for vehicle routing. First, EVs are opposed to CVs. Second, the effect of increasing the battery capacity of EVs is investigated. Third, the impact of introducing recharge stations for EVs is analyzed. Finally, the characteristics of mixed fleets are investigated. The computational results are generated by solving a MIP formulation of the introduced Energy Vehicle Routing Problem with Time Windows, Recharge Stations and Vehicle Classes (EVRPTW-R-VC) by means of a commercial solver.


Vehicle routing Electric powered and combustion-powered vehicles Heterogeneous vehicle fleet Energy consumption Recharge stations 

JEL Classification

C0 R4 


  1. Bektaş T, Laporte G (2011) The pollution-routing problem. Transp Res Part B Methodol 45(8):1232–1250CrossRefGoogle Scholar
  2. Berndt S (2016) Max mnller spedition ist vorreiter: Erster elektro-lkw in süddeutschland. myLogistics Accessed 23 Mar 2018
  3. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6(1):80–91CrossRefGoogle Scholar
  4. Demir E, Bektaş T, Laporte G (2014) A review of recent research on green road freight transportation. Eur J Oper Res 237(3):775–793CrossRefGoogle Scholar
  5. Desaulniers G, Errico F, Irnich S, Schneider M (2016) Exact algorithms for electric vehicle-routing problems with time windows. Oper Res 64(6):1388–1405CrossRefGoogle Scholar
  6. E-Force One AG (2016) Eforce 18-44t elkw. Accessed 23 Mar 2018
  7. Eglese R, Bektaş T (2014) Green vehicle routing. In: Toth P, Vigo D (eds) Vehicle routing: problems, methods and applications (2nd edition), Philadelphia: MOS-SIAM Series on Optimization 18, chap 15, pp 437–458, 10.1137/1.9781611973594.ch15Google Scholar
  8. Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res Part E Logist Transp Rev 48(1):100–114CrossRefGoogle Scholar
  9. Figliozzi M (2010) Vehicle routing problem for emissions minimization. Transp Res Rec J Transp Res Board 2197(1):1–7CrossRefGoogle Scholar
  10. Goeke D, Schneider M (2015) Routing a mixed fleet of electric and conventional vehicles. Eur J Oper Res 245(1):81–99CrossRefGoogle Scholar
  11. Hacker F, von Waldenfels R, Mottschall M (2015) Wirtschaftlichkeit von elektromobilität in gewerblichen anwendungen. betrachtung von gesamtnutzungskosten, ökonomischen potenzialen und möglicher \(co_2\)-minderung. IKT für ElektromobilitätGoogle Scholar
  12. Hiermann G, Puchinger J, Ropke S, Hartl RF (2016) The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Eur J Oper Res 252(3):995–1018. CrossRefGoogle Scholar
  13. Kara İ, Kara BY, Yetis MK (2007) Energy minimizing vehicle routing problem. In: Dress A, Xu Y, Zhu B (eds) Combinatorial optimization and applications. COCOA 2007. Lecture notes in computer science, vol 4616. Springer, Berlin, HeidelbergGoogle Scholar
  14. Keskin M, Çatay B (2016) Partial recharge strategies for the electric vehicle routing problem with time windows. Transp Res Part C 65:111–127CrossRefGoogle Scholar
  15. Koç Ç, Bektaş T, Jabali O, Laporte G (2014) The fleet size and mix pollution-routing problem. Transp Res Part B Methodol 70:239–254CrossRefGoogle Scholar
  16. Koç Ç, Bektaş T, Jabali O, Laporte G (2016) Thirty years of heterogeneous vehicle routing. Eur J Oper Res 249(1):1–21. CrossRefGoogle Scholar
  17. Kopfer H, Schopka K (2016) Vehicle routing for fleets with electric- and combustion-powered vehicles. In: Proceedings of 7th International Conference on Computational LogisticsGoogle Scholar
  18. Kopfer HW, Kopfer H (2013) Emissions minimization vehicle routing problem in dependence of different vehicle classes. In: Kreowski HJ, Scholz-Reiter B, Thoben KD (eds) Dynamics in logistics. Lecture notes in logistics. Springer, Berlin Heidelberg, pp 49–58Google Scholar
  19. Kopfer HW, Schönberger J, Kopfer H (2014) Reducing greenhouse gas emissions of a heterogeneous vehicle fleet. Flex Serv Manuf J 26(1–2):221–248. CrossRefGoogle Scholar
  20. Kraftfahrt-Bundesamt, (2017) Fahrzeugzulassungen (fz) - bestand an kraftfahrzeugen nach umwelt-merkmalen. Kraftfahrt-Bundesamt, FlensburgGoogle Scholar
  21. Kwon YJ, Choi YJ, Lee DH (2013) Heterogeneous fixed fleet vehicle routing considering carbon emission. Transp Res Part D Transp Environ 23:81–89CrossRefGoogle Scholar
  22. Lin C, Choy K, Ho G, Chung S, Lam H (2014) Survey of green vehicle routing problem: past and future trends. Expert Syst Appl 41(4):1118–11138. CrossRefGoogle Scholar
  23. Orten (2016) URL: Accessed 15 June 2016
  24. oV (2015) Wie machen sich ihre Elektro-LKW in der Praxis? Verkehrs Rundschau Verlag Heinrich Vogel 46Google Scholar
  25. oV (2016) Elektrolaster mit modularem Batteriekonzept. Das Messemagazin IAA SPOT 66Google Scholar
  26. Pelletier S, Jabali O, Laporte G (2014) Goods distribution with electric vehicles: Review and research perspectives. Tech. rep., Technical Report CIRRELT-2014-44, CIRRELT, Montréal, CanadaGoogle Scholar
  27. Pelletier S, Jabali O, Laporte G (2017) Battery degradation and behaviour for electric vehicles: review and numerical analyses of several models. Transp Res Part B 103:10587CrossRefGoogle Scholar
  28. Pieringer M (2015) Automotive: BMW und Scherm nehmen Elektro-Lkw in Betrieb. Logistik Heute URL: Accessed 24 Nov 2016
  29. Sassi O, Cherif WR, Oulamara A (2014) Vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs. HAL archives-ouvertesGoogle Scholar
  30. Schmied M, Knörr W (2013) Berechnung von Treibhausgasemissionen in Spedition und Logistik gemäß DIN EN 16258. Edited by Deutscher Speditions-und Logistikverband eV Öko-Institut eVGoogle Scholar
  31. Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and recharging stations. Transp Sci 48(4):500–520CrossRefGoogle Scholar
  32. Scott C, Urquhart N, Hart E (2010) Influence of topology and payload on co2 optimised vehicle routing. In: Di Chio C, Brabazon A, Di Caro G, Ebner M, Farooq M, Fink A, Grahl J, Greenfield G, Machado P, O’Neill M, Tarantino E, Urquhart N (eds) Applications of Evolutionary Computation, vol 6025. Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 141–150CrossRefGoogle Scholar
  33. Suzuki Y (2011) A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp Res Part D Transp Environ 16(1):73–77. CrossRefGoogle Scholar
  34. Toth P, Vigo D (2014) Vehicle routing: problems, methods, and applications, vol 18. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaGoogle Scholar
  35. Vornhusen B, Kopfer H (2015) Emission vehicle routing problem with split delivery and a heterogeneous vehicle fleet. In: Corman F, Voß S, Negenborn R (eds) In: Proceedings of 6th International Conference on Computational Logistics, Springer International Publishing, LNCS 9335, pp 76–90Google Scholar
  36. Wang X, Kopfer H, Gendreau M (2014) Operational transportation planning of freight forwarding companies in horizontal coalitions. Eur J Oper Res 237(3):1133–1141. CrossRefGoogle Scholar
  37. Wang YW, Lin CC (2013) Locating multiple types of recharging stations for battery-powered electric vehicle transport. Transp Res Part E 58:76–87CrossRefGoogle Scholar
  38. Xiao Y, Zhao Q, Kaku I, Xu Y (2012) Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput Oper Res 39(7):1419–1431CrossRefGoogle Scholar
  39. Zhang J, Zhang Y, Xue W, Li J (2015) Vehicle routing problem with fuel consumption and carbon emission. Int J Prod Econ 170(4):234–242. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of BremenBremenGermany

Personalised recommendations