Multi-item single-source ordering with detailed consideration of transportation capacities

  • Martin Grunewald
  • Thomas Volling
  • Christoph Müller
  • Thomas S. Spengler
Original Paper
  • 26 Downloads

Abstract

We consider multi-item single-source ordering with detailed consideration of transportation capacities. Such problems are characteristic for companies which operate direct links as part of their supply chain to transport loads with heterogeneous physical dimensions and fluctuating demands. Given knowledge on transportation demands, companies can eliminate future transports by shifting the load to fill the inflexible capacity of prior transports. While reducing transportation costs, doing so will ceteris paribus imply inventory. The problem is to coordinate orders across multiple items such that transport costs are minimized at minimal increase in inventory. The approach is distinct from prior works in that it considers detailed loading restrictions. We therefore interpret the problem as a multi-period version of the container loading problem. A wall building approach is used and incorporated into a heuristic rolling horizon procedure. We test the proposed procedure on some random problems which resemble a real inbound case from the automotive industry. As compared to period-by-period planning and two benchmarks with aggregated capacity models from the literature and practice, cost savings are possible under a wide range of operating conditions and mostly independent of the shipping volume. The largest potential exists for mid- to long-distance transports. There is a relevant potential to improve short-distance transports as well, however, only if inventory cost rates are moderate.

Keywords

Joint ordering Multi-item dynamic lot-sizing Direct links Container loading Automotive industry 

JEL Classification

L920 

References

  1. Ali AI, O’Connor DJ (2013) Using truck-inventory-cost to obtain solutions to multi-period logistics models. Int J Prod Econ 143(1):144–150CrossRefGoogle Scholar
  2. Alonso MT, Alvarez-Valdes R, Iori M, Parreño F, Tamarit JM (2017) Mathematical models for multicontainer loading problems. Omega 66(Part A):106–117CrossRefGoogle Scholar
  3. Andersson H, Hoff A, Christiansen M, Hasle G, Løkketangen A (2010) Industrial aspects and literature survey: combined inventory management and routing. Comput Oper Res 37(9):1515–1536CrossRefGoogle Scholar
  4. Anily S, Tzur M (2005) Shipping multiple items capacitated vehicles: an optimal dynamic programming approach. Transp Sci 39(2):233–248CrossRefGoogle Scholar
  5. Anily S, Tzur M (2006) Algorithms for the multi-item multi-vehicles dynamic lot sizing problem. Nav Res Logist 53(2):157–169CrossRefGoogle Scholar
  6. Ben-Khedher N, Yano CA (1994) The multi-item joint replenishment problem with transportation and container effects. Transp Sci 28(1):37–54CrossRefGoogle Scholar
  7. Bortfeldt A, Wäscher G (2013) Constraints in container loading—a state-of-the-art review. Eur J Oper Res 229(1):1–20CrossRefGoogle Scholar
  8. Boysen N, Emde S, Hoeck M, Kauderer M (2015) Part logistics in the automotive industry: decision problems, literature review and research agenda. Eur J Oper Res 242(1):107–120CrossRefGoogle Scholar
  9. Cachon G (2001) Managing a retailer’s shelf space, inventory, and transportation. Manuf Serv Oper Manag 3(3):211–229CrossRefGoogle Scholar
  10. Coelho Leandro C, Cordeau Jean-François, Laporte Gilbert (2014) Thirty years of inventory routing. Transp Sci 48(1):1–19CrossRefGoogle Scholar
  11. Côté JF, Guastaroba G, Speranza MG (2017) The value of integrating loading and routing. Eur J Oper Res 257(1):89–105CrossRefGoogle Scholar
  12. Fandel G, Reese J (1991) Just-in-time logistics of a supplier in the car manufacturing industry. Int J Prod Econ 24(1–2):55–64CrossRefGoogle Scholar
  13. Fandel Günter, Giese Anke, Raubenheimer Heike (2009) Supply Chain Management: Strategien—Planungsansätze—Controlling. Springer, BerlinCrossRefGoogle Scholar
  14. Fandel Günter, Fistek Allegra, Stütz Sebastian (2011) Produktionsmanagement, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  15. George JA, Robinson DF (1980) A heuristic for packing boxes into a container. Comput Oper Res 7(3):147–156CrossRefGoogle Scholar
  16. Goyal SK, Gupta YP (1989) Integrated inventory models: the buyer-vendor coordination. Eur J Oper Res 41(3):261–269CrossRefGoogle Scholar
  17. Gramani MCN, França PM (2006) The combined cutting stock and lot-sizing problem in industrial processes. Eur J Oper Res 174(1):509–521CrossRefGoogle Scholar
  18. Khouja M, Goyal S (2008) A review of the joint replenishment problem literature: 1989–2005. Eur J Oper Res 186(1):1–16CrossRefGoogle Scholar
  19. Kiesmüller GP (2009) A multi-item periodic replenishment policy with full truckloads. Int J Prod Econ 118(1):275–281CrossRefGoogle Scholar
  20. Langner B (2015) Die deutsche Luftfracht im internationalen Wettbewerb: Zur Markt- und WettbewerbsentwicklungGoogle Scholar
  21. Melega GM, de Araujo SA, Jans R (2016) Comparison of MIP models for the integrated lot-sizing and one-dimensional cutting stock problem. Pesquisa Operacional 36(1):167–196CrossRefGoogle Scholar
  22. Meyr H (2004) Supply chain planning in the German automotive industry. OR Spectrum 26(4):447–470CrossRefGoogle Scholar
  23. Nonås SL, Thorstenson A (2008) Solving a combined cutting-stock and lot-sizing problem with a column generating procedure. Comput Oper Res 35(10):3371–3392CrossRefGoogle Scholar
  24. Poldi KC, de Araujo SA (2016) Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem. Ann Oper Res 238(1–2):497–520CrossRefGoogle Scholar
  25. Poltroniere SC, Poldi KC, Toledo FMB, Arenales MN (2008) A coupling cutting stock-lot sizing problem in the paper industry. Ann Oper Res 157(1):91–104CrossRefGoogle Scholar
  26. Sancak E, Salman FS (2011) Multi-item dynamic lot-sizing with delayed transportation policy. Int J Prod Econ 131(2):595–603CrossRefGoogle Scholar
  27. Schöneberg T, Koberstein A, Suhl L (2013) A stochastic programming approach to determine robust delivery profiles in area forwarding inbound logistics networks. OR Spectrum 35(4):807–834CrossRefGoogle Scholar
  28. Stein B, Voith C (2008) Modell zur Losgrößenoptimierung am Beispiel der Blechteilindustrie für Automobilzulieferer, Hochsch. für angewandte. Wiss, Amberg-WeidenGoogle Scholar
  29. Suzuki Y, Lu S-H (2017) Economies of product diversity in collaborative logistics. J Bus Logist 38(2):115–129CrossRefGoogle Scholar
  30. Van Eijs MJG (1994) Multi-item inventory systems with joint ordering and transportation decisions. Int J Prod Econ 35(1–3):285–292CrossRefGoogle Scholar
  31. Vanzela M, Melega GM, Rangel S, Araujo SAD (2017) The integrated lot sizing and cutting stock problem with saw cycle constraints applied to furniture production. Comput Oper Res 79:148–160CrossRefGoogle Scholar
  32. VDA Center of Competence Packaging (2011) Großladungsträger (GLT)—System, Verband der Automobilindustrie: Berlin. https://www.vda.de/de/services/Publikationen/vda-empfehlung-gro%C3%9Fladungstr-ger.html. Accessed 21 July 2016
  33. Volling T, Grunewald M, Spengler TS (2013a) An integrated inventory-transportation system with periodic pick-ups and leveled replenishment. Bus Res 6(2):173–194CrossRefGoogle Scholar
  34. Volling T, Matzke A, Grunewald M, Spengler TS (2013b) Planning of capacities and orders in build-to-order automobile production: a review. Eur J Oper Res 224(2):240–260CrossRefGoogle Scholar
  35. Yano Candace A, Gerchak Yigal (1989) Transportation contracts and safety stocks for just-in-time deliveries. J Manuf Oper Manag 2:314–330Google Scholar
  36. Zhao X, Bennell JA, Bektaş T, Dowsland K (2016) A comparative review of 3D container loading algorithms. Int Trans Oper Res 23(1–2):287–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Automotive Management and Industrial ProductionTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Faculty of Economics and ManagementTechnische Universität BerlinBerlinGermany

Personalised recommendations