Journal of Business Economics

, Volume 87, Issue 1, pp 5–39 | Cite as

Analyzing investment strategies under changing energy and climate policies: an interdisciplinary bottom-up approach regarding German metal industries

  • Patrick Breun
  • Magnus Fröhling
  • Konrad Zimmer
  • Frank Schultmann
Original Paper
  • 221 Downloads

Abstract

German metal producers face an intense international competition. The comparably high domestic energy and production costs additionally challenge the producers. Beside this, German energy intensive industries (GEII) are embedded in a complex regulatory framework induced by energy and climate policies. These policies consist of different economic political instruments which are regularly changed to incentivize greenhouse gas (GHG) emission reductions. Therefore, future investment decisions in energy efficiency increasing technologies (EEIT) have to be evaluated dependent on these changing political conditions. Thus, actors in the metal industry need decision support in developing sustainable investment strategies which withstand different political developments. Given these circumstances, we develop an actor-oriented simulation model which simulates the optimal future investment decisions of all German iron, steel and aluminum producing plants under different political conditions based on a detailed plant-specific technical process description. Thereby, economic and engineering parameters are combined in an interdisciplinary approach to derive future investment strategies for the metal producing plants facing probable political changes. This approach closes the scientific gap between top-down oriented studies which usually are not capable of representing detailed plant-specific aspects and solely technical oriented studies which are often limited to a single plant or facility.

Keywords

Energy intensive industries Metal industry Climate policy Bottom-up approach Investment decision Greenhouse gas emissions 

JEL Classification

L610 (Metals and Metal Products; Cement; Glass; Ceramics) 

Notes

Acknowledgments

This work has been supported and funded by the German Federal Ministry of Education and Research under Grant no. 01LA1111A. The authors are responsible for the content.

References

  1. Ackerman F, Munitz C (2012) Climate damages in the FUND model: a disaggregated analysis. Ecol Econ 77:219–224CrossRefGoogle Scholar
  2. Alberth S, Hope C (2007) Climate modelling with endogenous technical change: Stochastic learning and optimal greenhouse gas abatement in the PAGE2002 model. Energy Policy 35(3):1795–1807CrossRefGoogle Scholar
  3. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Modell 176(3–4):313–332CrossRefGoogle Scholar
  4. Breun P, Fröhling M, Schultmann F (2014) Ein nichtlineares Optimierungsmodell zur Bestimmung der Stoffflüsse in der deutschen Eisen- und Stahlindustrie. In: Kunze R, Fichtner W (eds) Einsatz von OR-Verfahren zur Analyse von Fragestellungen im Umweltbereich, Tagungsband zum Workshop der GOR-Arbeitsgruppe OR im Umweltschutz am 07. und 08. März 2013 in Karlsruhe, Shaker Verlag AachenGoogle Scholar
  5. Breun P, Fröhling M, Schultmann F (2015) An actor-oriented approach to evaluate climate policies with regard to resource intensive industries. Operations Research Proceedings (accepted)Google Scholar
  6. Claasen M, Althaus JH, Blaser S, Tuchschmid M, Jungbluth N, Doka G, Emmenegger MF, Scharnhorst W (2009) Life Cycle Inventories of Metals—Data v2.1. Tech. Rep. 10, Swiss Centre for Life Cycle Inventories, online-Version: www.ecoinvent.chGoogle Scholar
  7. Destatis, (2014) GENESIS-Online Datenbank: VGR des Bundes—Nettobetriebsüberschuss (nominal): Deutschland, Jahre. Wirtschaftsbereiche, Statistisches BundesamtGoogle Scholar
  8. EC (2012) Best Available Techniques (BAT) Reference Document for Iron and Steel Production—Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Tech. rep, European Commission, Joint Research CentreGoogle Scholar
  9. EEA (2012) The European Pollutant Release and Transfer Register (E-PRTR), Member States reporting under Article 7 of Regulation (EC) No 166/2006. European Environment Agency, DatabaseGoogle Scholar
  10. Fandel G (1991) Theory of production and cost. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  11. Fandel G (1994) Analysis of production planning and control (PPC) systems as an efficient combination of information activities. OR Spectrum 15(4):217–224CrossRefGoogle Scholar
  12. Franklin S, Graesser A (1997) Is It an agent, or just a program? A taxonomy for autonomous agents. In: Müller JP, Wooldridge MJ, Jennings NR (eds) Intelligent Agents III Agent Theories, Architectures, and Languages, vol 1193, Springer, pp 21–35Google Scholar
  13. Fröhling M, Bartusch H, Schwaderer F, Schultmann F (2009) An inter-company approach to improve resource and energy efficiency and reduce greenhouse gas emissions in metal industries by linking flow sheet models. World Metall Erzmetall 62(5):288–298Google Scholar
  14. Fröhling M, Schwaderer F, Bartusch H, Rentz O (2010) Integrated planning of transportation and recycling for multiple plants based on process simulation. Euro J Operat Res 207(2):958–970CrossRefGoogle Scholar
  15. Fröhling M, Bartusch H, Schwaderer F, Schultmann F (2012) Analyzing energy and resource efficiency measures in the iron and steel industry combining flowsheet simulation with a linear material and energy flow model. Revue de Métallurgie 109(1):359–367CrossRefGoogle Scholar
  16. Fröhling M, Schwaderer F, Bartusch H, Schultmann F (2013) A material flow-based approach to enhance resource efficiency in production and recycling networks. J Indust Ecol 17(1):5–19CrossRefGoogle Scholar
  17. Gross D, Strand R (2000) Can agent-based models assist decisions on large-scale practical problems? A philosophical analysis. Complexity 5(6):26–33CrossRefGoogle Scholar
  18. Gutowski TG, Sahni S, Allwood JM, Ashby MF, Worrell E (2013) The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 371Google Scholar
  19. Hare M, Deadman P (2004) Further towards a taxonomy of agent-based simulation models in environmental management. Math Comp Simul 64(1):25–40CrossRefGoogle Scholar
  20. Horst J, Klann U, Leprich U (2009) Kurzstudie zur Bedeutung des Strompreises für den Erhalt und die Entwicklung stromintensiver Industrien in Deutschland. Tech. rep, Hans Böckler StiftungGoogle Scholar
  21. Ilsen R (2012) Ein Beitrag zur modellgestützten Analyse umweltpolitischer Instrumente in den Bereichen Luftreinhaltung und Klimawandel. PhD thesis, Karlsruher Institut für Technologie (KIT)Google Scholar
  22. Iosif AM, Hanrot F, Ablitzer D (2008) Process integrated modelling for steelmaking life cycle Inventory analysis. Environ Impact Assessm Rev 28:429–438CrossRefGoogle Scholar
  23. Labitzke N, Volling T, Spengler TS (2011) Wertorientierte Simulation zur Unterstützung der logistischen Prozessgestaltung bei der Stahlherstellung. Zeitschrift für Betriebswirtschaft 81:771–803CrossRefGoogle Scholar
  24. Leontief WW (1936) Quantitative input and output relations in the economic systems of the United States. Rev Econ Stat 18(3):105–125CrossRefGoogle Scholar
  25. Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23(1):17–34CrossRefGoogle Scholar
  26. Matthes FC, Busche J, Döring U, Emele L, Gores S, Harthan RO, Hermann H, Jörß W, Loreck C, Scheffler M, Hansen P, Diekmann J, Horn M, Eichhammmer W, Elsland R, Fleiter T, Schade W, Schlomann B, Sensfuß F, Ziesing HJ (2013) Politikszenarien für den Klimaschutz VI - Treibhausgas-Emissionsszenarien bis zum Jahr 2030. UmweltbundesamtGoogle Scholar
  27. Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  28. Nordhaus WD (2010) Economic aspects of global warming in a post-Copenhagen environment. Proceed Nat Acad Sci 107(26):11,721–11,726Google Scholar
  29. Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers. McGraw-Hill, New YorkGoogle Scholar
  30. Porzio GF, Fornai B, Amato A, Matarese N, Vannucci M, Chiappelli L, Colla V (2013) Reducing the energy consumption and CO\(_2\) emissions of energy intensive industries through decision support systems - An example of application to the steel industry. Appl Energy 112:818–833CrossRefGoogle Scholar
  31. Rieseberg S, Wörlen C (2012) Befreiungen der energieintensiven Industrie in Deutschland von Energieabgaben. Tech. rep, Rosa Luxemburg Stiftung, Arepo ConsultGoogle Scholar
  32. Schlomann B, Fleiter T, Hirzel S, Arens M, Rohde C, Eichhammer W, Cebulla F, Elsland R, Fehrenbach D, Singer N, Gerspacher A, Idrissova F, Jochem E, Mai M, Reitze F, Toro FA, Bachmann J, Wittich K, Hassan A (2013) Energieverbrauch und CO\(_2\)-Emissionen industrieller Prozesstechnologien - Einsparpotenziale, Hemmnisse und Instrumente, Fraunhofer VerlagGoogle Scholar
  33. Schultmann F (2003) Stoffstrombasiertes Produktionsmanagement: Betriebswirtschaftliche Planung und Steuerung industrieller Kreislaufwirtschaftssysteme. Erich Schmidt Verlag, BerlinGoogle Scholar
  34. Schultmann F, Engels B, Rentz O (2004) Flowsheeting-based simulation of recycling concepts in the metal industry. Jf Clean Prod 12:737–751CrossRefGoogle Scholar
  35. Schumacher K, Sands RD (2007) Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany. Energ Econ 29(4):799–825CrossRefGoogle Scholar
  36. Shepherd RW (1970) Theory of Cost and Production Functions. Princeton University PressGoogle Scholar
  37. Solding P, Petku D, Mardan N (2009) Using simulation for more sustainable production systems - methodologies and case studies. Int J Sustain Eng 2(2):111–122CrossRefGoogle Scholar
  38. Spengler T, Hähre S, Sieverdingbeck A, Rentz O (1998) Stoffflussbasierte Umweltkostenrechnung zur Bewertung industrieller Kreislaufwirtschaftskonzepte - Dargestellt am Beispiel der Eisen- und Stahlindustrie. Zeitschrift für Betriebswirtschaft 68:147–174Google Scholar
  39. Thiede S, Seow Y, Andersson J, Johansson B (2013) Environmental aspects in manufacturing system modelling and simulation-state of the art and research perspectives. CIRP J Manufact Sci Technol 6:78–87CrossRefGoogle Scholar
  40. USGS (2014) 2012 Minerals Yearbook: GermanyGoogle Scholar
  41. VDEh (2014) PLANTFACTS database. Steel Institute VDEhGoogle Scholar
  42. Wooldridge M (2002) An Introduction to Multiagent Systems. John Wiley & Sons, LTDGoogle Scholar
  43. Wörtler M, Schuler F, Voigt N, Schmidt T, Dahlmann P, Lüngen HB, Ghenda JT (2013) Steel’s Contribution to a low-carbon Europe 2050: Technical and economic Analysis of the Sector’s CO\(_2\) Abatement Potential. Tech. rep, The Boston Consulting Group, Steel Institute VDEhGoogle Scholar
  44. WV Stahl, VDEh (2013) Statistisches Jahrbuch der Stahlindustrie 2013/2014. Verlag Stahleisen GmbHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Patrick Breun
    • 1
  • Magnus Fröhling
    • 2
  • Konrad Zimmer
    • 1
  • Frank Schultmann
    • 1
  1. 1.French-German Institute for Environmental Research (DFIU), Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Technische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations