Journal of Business Economics

, Volume 86, Issue 1–2, pp 5–21 | Cite as

NAUTILUS framework: towards trade-off-free interaction in multiobjective optimization

Original Paper


In this paper, we present a framework of different interactive NAUTILUS methods for multiobjective optimization. In interactive methods, the decision maker iteratively sees solution alternatives and provides one’s preferences in order to find the most preferred solution. We question the widely used setting that the solutions shown to the decision maker should all be Pareto optimal which implies that improvement in any objective function necessitates allowing impairment in some others. Instead, in NAUTILUS we enable the decision maker to make a free search without having to trade-off by starting from an inferior solution and iteratively approaching the Pareto optimal set by allowing all objective functions to improve. The framework presented consists of different modules for preference elicitation and optimization. Four main NAUTILUS method variants are introduced as well as ideas of utilizing the framework in a flexible way to derive further variants.


Interactive methods Multicriteria optimization Pareto optimality 

JEL Classification




F. Ruiz’s research has been partially supported by the Regional Government of Andalucía (group PAI SEJ-445) and by the Government of Spain (project ECO2013-47129-C4-2-R).


  1. Aloysius JA, Davis F, Wilson DD, Taylor AR, Kottemann JE (2006) User acceptance of multi-criteria decision support systems: the impact of preference elicitation techniques. Eur J Oper Res 169:273–285CrossRefGoogle Scholar
  2. Arbel A, Korhonen P (1996) Using aspiration levels in an interior primal-dual multiobjective linear programming algorithm. J Multi-Criteria Decis Anal 5:61–71CrossRefGoogle Scholar
  3. Belton V, Branke J, Eskelinen P, Greco S, Molina J, Ruiz F, Słowiński R (2008) Interactive multiobjective optimization from a learning perspective. In: Branke J, Deb K, Miettinen K, Słowiński R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, Heidelberg, pp 405–433Google Scholar
  4. Branke J, Deb K, Miettinen K, Słowiński R (eds) (2008) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, HeidelbergGoogle Scholar
  5. Buchanan JT, Corner J (1997) The effects of anchoring in interactive MCDM solution methods. Comput Oper Res 24(10):907–918CrossRefGoogle Scholar
  6. Deb K, Miettinen K, Chaudhuri S (2010) Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans Evol Comput 14(6):821–841CrossRefGoogle Scholar
  7. Ehtamo H, Kettunen E, Hamalainen RP (2001) Searching for joint gains in multi-party negotiations. Eur J Oper Res 130(1):54–69CrossRefGoogle Scholar
  8. Hwang C-L, Masud ASM (1979) Multiple objective decision making-methods and applications: a state-of-the-art survey. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  9. Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47(2):263–291CrossRefGoogle Scholar
  10. Luque M, Miettinen K, Eskelinen P, Ruiz F (2009) Incorporating preference information in interactive reference point methods for multiobjective optimization. Omega 37(2):450–462CrossRefGoogle Scholar
  11. Luque M, Ruiz F, Miettinen K (2011) Global formulation for interactive multiobjective optimization. OR Spectr 33:27–48CrossRefGoogle Scholar
  12. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, BostonGoogle Scholar
  13. Miettinen K, Hakanen J (2009) Why use interactive multi-objective optimization in chemical process design? In: Rangaiah G (ed), Multi-objective optimization: techniques and applications in chemical engineering, World Scientific, pp 153–188Google Scholar
  14. Miettinen K, Ruiz F, Wierzbicki A (2008) Introduction to multiobjective optimization: interactive approaches. In: Branke J, Deb K, Miettinen K, Słowiński R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, Heidelberg, pp 27–57CrossRefGoogle Scholar
  15. Miettinen K, Eskelinen P, Ruiz F, Luque M (2010) NAUTILUS method: an interactive technique in multiobjective optimization based on the nadir point. Eur J Oper Res 206:426–434CrossRefGoogle Scholar
  16. Miettinen K, Podkopaev D, Ruiz F, Luque M (2015) A new preference handling technique for interactive multiobjective optimization without trading-off. J Glob Optim. doi: 10.1007/s10898-015-0301-8 Google Scholar
  17. Morse J (1980) Reducing the size of the nondominated set: pruning by clustering. Comput Oper Res 7:55–66CrossRefGoogle Scholar
  18. Ruiz F, Luque M, Cabello JM (2008) A classification of the weighting schemes in reference point procedures for multiobjective programming. J Oper Res Soc 60(4):544–553CrossRefGoogle Scholar
  19. Ruiz AB, Sindhya K, Miettinen K, Ruiz F, Luque M (2015) E-NAUTILUS: a decision support system for complex multiobjective optimization problems based on the NAUTILUS method. Eur J Oper Res 246:218–231CrossRefGoogle Scholar
  20. Steuer R, Choo E (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Progr 26(3):326–344CrossRefGoogle Scholar
  21. Szczepanski M, Wierzbicki AP (2003) Application of multiple criterion evolutionary algorithm to vector optimization, decision support and reference point approaches. J Telecommun Inf Technol 3:16–33Google Scholar
  22. Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making: theory and application. Springer, Berlin, Heidelberg, pp 468–486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of Jyvaskyla, Department of Mathematical Information TechnologyUniversity of JyvaskylaFinland
  2. 2.Department of Applied Economics (Mathematics)Universidad de MálagaMálagaSpain

Personalised recommendations