Journal of Business Economics

, Volume 86, Issue 5, pp 513–535 | Cite as

Optimizing the allocation of fast charging infrastructure along the German autobahn

  • Patrick Jochem
  • Carsten Brendel
  • Melanie Reuter-Oppermann
  • Wolf Fichtner
  • Stefan Nickel
Original Paper


The allocation of fast charging stations is a severe investment for the future mobility system with electric vehicles. The allocation of the first charging stations influences the profitability of all other fast charging stations and should therefore be perfectly arranged. Hence, we applied and extended the flow-refueling location model (FRLM) developed by Capar et al. (Eur J Oper Res 227(1):142–151, 2013) to the German autobahn with a focus on the states Baden-Württemberg and Bavaria with 595 nodes and 3569 highway km. Our model extension comprehends mainly the inclusion of the access distance for traffic participants to their closest network node. In order to analyze the impact of different vehicle ranges and the desired coverage of flows we defined four scenarios. The results indicate the significance of vehicle range and the desired coverage value. 20 optimally allocated fast charging stations along the highways lead already to a coverage of about 62 % (100 km vehicle range) or even 83 % (150 km vehicle range) of all trips. A complete coverage of trips requires at least 50 (150 km vehicle range), 77 (100 km vehicle range) or even 84 (70 km vehicle range) fast charging stations. The last 30 % coverage leads to a tripling of charging stations. Furthermore, a first estimation of the corresponding surcharge for fixed costs per charging process amounts to about 20 % of the total costs for a charging process.


Fast charging station Electric vehicle Optimization Allocation Germany 

JEL Classification

M20 C61 O33 P48 



The authors would like to thank all participants of the workshop “Sustainability and Decision Making” at the RWTH Aachen in February 2015, especially Grit Walther, for fruitful discussions and helpful comments.


  1. Babrowski S, Heinrichs H, Jochem P, Fichtner W (2014) Load shift potential of electric vehicles in Europe. J Power Sources 255:283–293. doi: 10.1016/j.jpowsour.2014.01.019 CrossRefGoogle Scholar
  2. Bapna R, Thakur LS, Nair SK (2002) Infrastructure development for conversion to environmentally friendly fuel. Eur J Oper Res 142(3):480–496. doi: 10.1016/S0377-2217(01)00309-5 CrossRefGoogle Scholar
  3. Berman O, Hodgson MJ, Krass D (1995) Flow intercepting models. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer, New York, pp 389–426CrossRefGoogle Scholar
  4. Capar I, Kuby M (2012) An efficient formulation of the flow refueling location model for alternative-fuel stations. IIE Trans 44(8):622–636. doi: 10.1080/0740817X.2011.635175 CrossRefGoogle Scholar
  5. Capar I, Kuby M, Leon VJ, Tsai Y (2013) An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations. Eur J Oper Res 227(1):142–151. doi: 10.1016/j.ejor.2012.11.033 CrossRefGoogle Scholar
  6. CHAdeMO (2015) CHAdeMO’s fast charging stations in the world. Accessed 02 Aug 2015
  7. Chlond B (2012) Mobilitätsverhalten und Mobilitätsbedürfnisse versus neue Antriebskonzepte: Wie passt das zusammen? In: Jochem P, Poganietz W-R, Grunwald A, Fichtner W (eds) Alternative Antriebskonzepte bei sich wandelnden Mobilitätsstilen. KIT Scientific Publishing, Germany, pp 185–208Google Scholar
  8. Christofides N (1975) Graph theory: an algorithmic approach. Academic Press, New YorkGoogle Scholar
  9. Church RL, ReVelle CS (1974) The Maximal Covering Location Problem. Papers in Regional Science 32(1):101–118. doi: 10.1111/j.1435-5597.1974.tb00902.x CrossRefGoogle Scholar
  10. Elektromobilität verbindet (2015) Bayern Sachsen Elektromobilität verbindet. Accessed 02 Jan 2015
  11. Eurostat (2015) Electricity prices by type of user (ten00117). Eurostat. Accessed 02 Jan 2015
  12. Floyd RW (1962) Algorithm 97: shortest path. Commun of the Assoc for Comput Mach 5(6):345. doi: 10.1145/367766.368168 Google Scholar
  13. Fotheringham AS, O’Kelly ME (1989) Spatial interaction models. Formulations and applications. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. Goodchild N (1987) Location-allocation and impulsive shopping the case of gasoline retailing. In: Ghosh A, Rushton G (eds) Spatial analysis and location-allocation models. Van Nostrand Reinhold, New YorkGoogle Scholar
  15. Herdl C (2014) Informationsbeschaffung und Literaturrecherche zur optimalen Allokation von Ladeinfrastruktur für Elektrofahrzeuge am Beispiel Deutschland (Mode 4). Bachelor Thesis, Karlsruhe Institute of TechnologyGoogle Scholar
  16. Hodgson MJ (1990) A flow-capturing location-allocation model. Geogr Anal 22(3):270–279. doi: 10.1111/j.1538-4632.1990.tb00210.x CrossRefGoogle Scholar
  17. Hodgson MJ (1998) Developments in flow-based location-allocation models. In: Griffith DA, Amrhein CG, Huriot JM (eds) Econometric advances in spatial modelling and methodology. Springer, Boston, pp 119–132. doi: 10.1007/978-1-4757-2899-6_10 CrossRefGoogle Scholar
  18. Hodgson MJ, Berman O (1997) A billboard location model. Geogr and Environ Model 1:25–46Google Scholar
  19. Hodgson MJ, Rosing KE (1992) A network location-allocation model trading off flow capturing and p-median objectives. Ann Oper Res 40(1):247–260. doi: 10.1007/BF02060480 CrossRefGoogle Scholar
  20. Hodgson MJ, Rosing KE (1996) Applying the flow-capturing location-allocation model to an authentic network. Edmonton, Canada. Eur J Oper Res 90(3):427–443. doi: 10.1016/0377-2217(95)00034-8 CrossRefGoogle Scholar
  21. Hodgson MJ, Rosing KE, Zhang J (1996) Locating vehicle inspection stations to protect a transportation network. Geogr Anal 28(4):299–314. doi: 10.1111/j.1538-4632.1996.tb00937.x CrossRefGoogle Scholar
  22. IEA (International Energy Agency) (2013) Global EV Outlook. IEA. Accessed 02 Jan 2015
  23. Infas (Institute for Applied Social Sciences) and DLR (German Aerospace Center) (2010) Mobilität in Deutschland, project report, Berlin. Accessed 02 Jan 2015
  24. Kim J-G, Kuby M (2012) The deviation-flow refueling location model for optimizing a network of refueling stations. Int J of Hydrog Energy 37(6):5406–5420. doi: 10.1016/j.ijhydene.2011.08.108 CrossRefGoogle Scholar
  25. Kuby M, Lim S (2005) The flow-refueling location problem for alternative-fuel vehicles. Socio-Econ Plan Sci 39(2):125–145. doi: 10.1016/j.seps.2004.03.001 CrossRefGoogle Scholar
  26. Kuby M, Lim S (2007) Location of alternative-fuel stations using the flow-refueling location model and dispersion of candidate sites on arcs. Netw and Spat Econ 7(2):129–152. doi: 10.1007/s11067-006-9003-6 CrossRefGoogle Scholar
  27. Kuby M, Lines L, Schultz R, Xie Z, Kim J-G, Lim S (2009) Optimization of hydrogen stations in Florida using the flow-refueling location model. Int J of Hydrog Energy 34(15):6045–6064. doi: 10.1016/j.ijhydene.2009.05.050 CrossRefGoogle Scholar
  28. Lensing N (2013) Road traffic census 2010: methodology. German Federal Highway Research Institute (BASt), GermanyGoogle Scholar
  29. Lim S, Kuby M (2010) Heuristic algorithms for siting alternative-fuel stations using the flow-refueling location model. Eur J Oper Res 204(1):51–61. doi: 10.1016/j.ejor.2009.09.032 CrossRefGoogle Scholar
  30. MirHassani SA, Ebrazi R (2013) A flexible reformulation of the refueling station location problem. Transp Sci 47(4):617–628. doi: 10.1287/trsc.1120.0430 CrossRefGoogle Scholar
  31. Neubauer J, Wood E (2014) The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility. J Power Sour 257:12–20. doi: 10.1016/j.jpowsour.2014.01.075 CrossRefGoogle Scholar
  32. Nickel S, Stein O, Waldmann KH (2014) Operations research. Springer, BerlinCrossRefGoogle Scholar
  33. Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5:329–332. doi: 10.1038/nclimate2564 CrossRefGoogle Scholar
  34. Ortúzar JD, Willumsen LG (2011) Modelling transport. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  35. Plötz P, Gnann T, Wietschel M (2014a) Modelling market diffusion of electric vehicles with real world driving data—Part I: model structure and validation. Ecol Econ 107:411–421. doi: 10.1016/j.ecolecon.2014.09.021 CrossRefGoogle Scholar
  36. Plötz P, Schneider U, Globisch J, Dütschke E (2014b) Who will buy electric vehicles? Identifying early adopters in Germany. Transp Res Part A 67:96–109. doi: 10.1016/j.tra.2014.06.006 Google Scholar
  37. Plötz P, Gnann T, Kühn A, Wietschel M (2014c) Markthochlaufszenarien für Elektrofahrzeuge. Fraunhofer ISI, Accessed 02 Jan 2015
  38. Qian K, Zhou C, Yuan Y (2015) Impacts of high penetration level of fully electric vehicles charging loads on the thermal ageing of power transformers. Intern J of Electr Power and Energy Syst 65:102–112. doi: 10.1016/j.ijepes.2014.09.040 CrossRefGoogle Scholar
  39. Ratnayake LL (1988) Estimating origin-destination matrices from link volume counts: a simple intercity auto travel demand model for Sri Lanka. Transp Plan and Technol 12(3–4):263–271. doi: 10.1080/03081068808717378 CrossRefGoogle Scholar
  40. Road Bureau (2015) Road Network of Japan, Japanese Ministry of Land, Infrastructure and Transport.,bureau-route-japon.pdf. Accessed 02 Aug 2015
  41. Schroeder A, Traber T (2012) The economics of fast charging infrastructure for electric vehicles. Energy Policy 43:136–144. doi: 10.1016/j.enpol.2011.12.041 CrossRefGoogle Scholar
  42. Shukla A, Pekny J, Venkatasubramanian V (2011) An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Comp and Chem Eng 35(8):1431–1438. doi: 10.1016/j.compchemeng.2011.03.018 CrossRefGoogle Scholar
  43. Szimba E (2008) Interdependence between Transport Infrastructure Projects. Dissertation, KarlsruheGoogle Scholar
  44. Szimba E (2014) ETISplus. Karlsruhe Institute of Technology. Accessed 26 Nov 2014
  45. Tourani A, White P, Ivey P (2014) Analysis of electric and thermal behaviour of lithium-ion cells in realistic driving cycles. J Power Sour 268:301–314. doi: 10.1016/j.jpowsour.2014.06.010 CrossRefGoogle Scholar
  46. Upchurch C, Kuby M (2010) Comparing the p-median and flow-refueling models for locating alternative-fuel stations. J Transp Geogr 18(6):750–758. doi: 10.1016/j.jtrangeo.2010.06.015 CrossRefGoogle Scholar
  47. Upchurch C, Kuby M, Lim S (2009) A model for location of capacitated alternative-fuel stations. Geogr Anal 1(41):85–106. doi: 10.1111/j.1538-4632.2009.00744.x CrossRefGoogle Scholar
  48. Wang Y-W, Lin C-C (2009) Locating road-vehicle refueling stations. Transp Res Part E 45(5):821–829. doi: 10.1016/j.tre.2009.03.002 CrossRefGoogle Scholar
  49. Wang YW, Wang C-R (2010) Locating passenger vehicle refueling stations. Transp Res Part E 46(5):791–801. doi: 10.1016/j.tre.2009.12.001 CrossRefGoogle Scholar
  50. Warshall S (1962) A theorem on boolean matrices. J Assoc Comp Mach 9:11–12. doi: 10.1145/321105.321107 CrossRefGoogle Scholar
  51. Willumsen (1978) Estimation of an O-D matrix from traffic counts—a review. University of Leeds, Institute for Transport Studies. Accessed 01 Dec 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Patrick Jochem
    • 1
  • Carsten Brendel
    • 1
  • Melanie Reuter-Oppermann
    • 1
  • Wolf Fichtner
    • 1
  • Stefan Nickel
    • 1
  1. 1.Karlsruhe Service Research Institute (KSRI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations