Advertisement

Digitalisierung und Konvergenz von Online- und Offline-Welt

Einfluss der mobilen Internetsuche auf das Kaufverhalten
  • Stephan DaurerEmail author
  • Dominik Molitor
  • Martin Spann
ZfB-Special Issue 4/2012

Zusammenfassung

Die zunehmende Verbreitung von internetfähigen Mobiltelefonen (Smartphones) führt dazu, dass immer mehr Konsumenten das mobile Internet nutzen. Damit einhergehend findet eine Integration von standortbezogenen Diensten, sogenannten Location-Based Services statt. Die Verwendung von Location-Based Services liefert Konsumenten zusätzliche Informationen (z. B. Alternativangebote oder Produktinformationen) und hat daher auch einen Einfluss auf deren Suchprozess und somit deren Kaufverhalten. In diesem Beitrag werden in einer empirischen Studie der Einfluss der mobilen Internetsuche mit Standortbezug untersucht und die Suchkosten von Konsumenten anhand von zwei unterschiedlichen Produkten gemessen. Hierzu wird eine Choice-Based-Conjoint-Analyse durchgeführt. Die Ergebnisse zeigen, dass die Konsumenten unterschiedliche Präferenzen bezüglich der Suche von Produkten haben und sich die Suchkosten in Abhängigkeit des jeweiligen Produkts stark unterscheiden. Zudem werden die Implikationen dieser Ergebnisse diskutiert. Der wesentliche Beitrag dieser Studie ist die Analyse und Quantifizierung der gegenseitigen Beeinflussung von Online- und Offline-Suche sowie die Messung von Suchkosten in einem mobilen Kontext.

Schlüsselwörter

Suchtheorie Location-Based Services Mobile Marketing Choice-Based-Conjoint-Analyse 

The digitalization and convergence of online and offline worlds

Impact of mobile internet search on consumer behavior

Abstract

The increasing diffusion of mobile phones with internet access (Smartphones) enables more and more consumers to use the mobile internet. In addition, there is a continuing integration of location-based services (LBS). By means of Global Positioning Systems or WiFi-triangulation LBS provide context-aware information to consumers. This leads to a convergence of online and offline worlds. The usage of LBS delivers additional information to consumers (e.g. alternative offers or detailed product information). Therefore LBS do have an influence on consumer behavior. Particularly during the search process, information about prices or geographic distances, that are relevant for the purchase, are of importance. This study analyzes the relevance of location-based internet search empirically. Search costs are estimated on an individual level in a choice-based conjoint analysis using two different products. As a result, location-based internet search is considered to be very relevant for search and influential on consumer behavior. The study shows different consumers preferences and different search costs depending on the product. To conclude the study, the implications are discussed. The major contribution of this study is that it shows that offline and online search do have a mutual impact on each other. Furthermore, search costs are measured in a mobile context.

Keywords

Search theory Location-based services Mobile marketing Choice-based conjoint analysis 

JEL Classification

D83 – Search; Learning; Information & Knowledge; Communication; Belief L86 – Information and Internet Services; Computer Software M21 – Business Economics 

Literatur

  1. Akaah IP, Korgaonkar PK (1983) An empirical comparison of the predictive validity of self-explicated, huber-hybrid, traditional conjoint, and hybrid conjoint models. J Mark Res 20(2):187–197CrossRefGoogle Scholar
  2. Allenby GM, Arora N, Ginter JL (1995) Incorporating prior knowledge into the analysis of conjoint studies. J Mark Res 32(2):152–162CrossRefGoogle Scholar
  3. Andrews RL, Ansari A, Currim IS (2002) Hierarchical Bayes versus finite mixture conjoint analysis models: a comparison of fit, prediction, and partworth recovery. J Mark Res 39(1):87–98CrossRefGoogle Scholar
  4. Ansari A, Mela CF (2003) E-customization. J Mark Res 40(2):131–145CrossRefGoogle Scholar
  5. Bakos JY (1997) Reducing buyer search costs: implications for electronic marketplaces. Manag Sci 43(12):1676–1692CrossRefGoogle Scholar
  6. Barnes SJ (2002) The mobile commerce value chain: analysis and future developments. Int J Inf Manag 22(2):91–108CrossRefGoogle Scholar
  7. Ben-Akiva M, Lerman SR (1994) Discrete choice analysis: theory and application to travel demand, 6. Aufl. MIT Press, Cambridge (Mass.)Google Scholar
  8. Brynjolfsson E, Dick AA, Smith MD (2010) A nearly perfect market? Quant Mark Econ 8(1):1–33CrossRefGoogle Scholar
  9. Brynjolfsson E, Smith MD (2000) Frictionless commerce? A comparison of internet and conventional retails. Manag Sci 46(4):563–585CrossRefGoogle Scholar
  10. Chae M, Kim J (2003) What’s so different about the mobile internet? Commun ACM 46(12):240–247CrossRefGoogle Scholar
  11. Chandran S, Morwitz VG (2005) Effects of participative pricing on consumers’ cognitions and actions: a goal theoretic perspective. J Consum Res 32(2):249–259CrossRefGoogle Scholar
  12. Churchill GA, Peter JP (1984) Research design effects on the reliability of rating scales: a meta-analysis. J Mark Res 21(4):360–375CrossRefGoogle Scholar
  13. Darden WR, Perreault WD (1976) Identifying interurban shoppers: multiproduct purchase patterns and segmentation profiles. J Mark Res 13(1):51–60CrossRefGoogle Scholar
  14. Dibbern J, Heinzl A, Schaub N (2007) Determinanten der Nutzung von mobilen Bankdiensten – Test eines Drei-Perspektiven-Modells. In: Hammerschmidt M, Stokburger-Sauer N, Bayón T, Herrmann A, Huber F (Hrsg) Vielfalt und Einheit in der Marketingwissenschaft: Ein Spannungsverhältnis, 1. Aufl. Gabler, Wiesbaden, S 449–478CrossRefGoogle Scholar
  15. Duxbury D, Keasey K, Zhang H, Chow SL (2005) Mental accounting and decision making: evidence under reverse conditions where money is spent for time saved. J Econ Psychol 26(4):567–580CrossRefGoogle Scholar
  16. eBay (2011) Mobile Information vor dem Kauf liegt im Trend [Online]. Dreilinden/Berlin. http://presse.ebay.de/pressrelease/3827. Zugegriffen: 2. Jan. 2012Google Scholar
  17. Forman C, Ghose A, Goldfarb A (2009) Competition between local and electronic markets: how the benefit of buying online depends on where you live. Manag Sci 55(1):47–57CrossRefGoogle Scholar
  18. Fotheringham AS (1988) Market share analysis techniques: a review and illustration of current US practice. In: Wrigley N (Hrsg) Store choice, store location and market analysis, 1. Aufl. Taylor & Francis, London, S 120–159Google Scholar
  19. Gartner (2011) Gartner says 428 Mio. mobile communication devices sold worldwide in first quarter 2011, a 19 % increase Year-on-Year [Online]. Egham, UK:Gartner, Inc. http://www.gartner.com/it/page.jsp?id=1689814. Zugegriffen: 2. Jan. 2012Google Scholar
  20. Ghose A, Goldfarb A, Han SP (2011) How is the mobile internet different? Search costs and local activities. Working Paper Series. New York UniversityGoogle Scholar
  21. Green PE, Srinivasan V (1990) Conjoint analysis in marketing: new developments with implications for research and practice. J Mark 54(4):3–19CrossRefGoogle Scholar
  22. Haaijer R, Kamakura WA, Wedel M (2001) The ‚No-Choice‘ alternative to conjoint choice experiments. Int J Mark Res 43(1):93–106Google Scholar
  23. Häubl G, Dellaert BGC, Donkers B (2010) Tunnel vision: local behavioral influences on consumer decisions in product search. Mark Sci 29(3):438–455CrossRefGoogle Scholar
  24. Huber J, Wittink D, Fiedler JA, Miller R (1993) The effectiveness of alternative preference elicitation procedures in predicting choice. J Mark Res 30(1):105–114CrossRefGoogle Scholar
  25. Hummel KA, Hess A, Meyer H (2010) Mobilität im „Future Internet“. Informatik-Spektrum 33(2):143–159CrossRefGoogle Scholar
  26. Johnson EJ, Moe WW, Fader PS, Bellman S, Lohse GL (2004) On the depth and dynamics of online search behavior. Manag Sci 50(3):299–308CrossRefGoogle Scholar
  27. Kamvar M, Baluja S (2006) A large scale study of wireless search behavior: google mobile search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2006, Montreal, Quebec, Canada. New York: ACM, 701–709Google Scholar
  28. Kamvar M, Baluja S (2007) Deciphering trends in mobile search. IEEE Comput Mag (Special Issue on Search) 40(8):58–62Google Scholar
  29. Kim HW, Chan HC, Gupta S (2007) Value-based adoption of mobile internet: an empirical investigation. Decis Support Syst 43(1):111–126CrossRefGoogle Scholar
  30. Lee T, Chen S, Wang S, Chang S (2009) Adoption of mobile location-based services with Zaltman metaphor elicitation techniques. Int J Mob Commun 7(1):117–132CrossRefGoogle Scholar
  31. Lenk PJ, DeSarbo WS, Green PE, Young MR (1996) Hierarchical Bayes conjoint analysis: recovery of partworth heterogeneity from reduced experimental designs. Mark Sci 15(2):173–191CrossRefGoogle Scholar
  32. Liu C, Rau P-LP, Gao F (2010) Mobile information search for location-based information. Comput Ind 61(4):364–371CrossRefGoogle Scholar
  33. MacMinn RD (1980) Search and market equilibrium. J Polit Econ 88(2):308–327CrossRefGoogle Scholar
  34. Malhotra NK, Jain AK, Lagakos SW (1982) The information overload controversy: an alternative viewpoint. J Mark 46(2):27–37CrossRefGoogle Scholar
  35. McFadden D (1986) The choice theory approach to market research. Mark Sci 5(4):275–297CrossRefGoogle Scholar
  36. Meeker M, Devitt S, Wu L (2010) Morgan Stanley internet trends 2010 [Online]: morgan stanley. http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041210.pdf. Zugegriffen: 2. Jan. 2012Google Scholar
  37. Moore WL (2004) A cross-validity comparison of rating-based and choice-based conjoint analysis models. Int J Res Mark 21(3):299–312CrossRefGoogle Scholar
  38. Nunnally JC (1978) Psychometric Theory, 1. Aufl. McGraw-Hill, New YorkGoogle Scholar
  39. Peterson RA (1994) A meta-analysis of Cronbach’s coefficient alpha. J Consum Res 21(2):381–391CrossRefGoogle Scholar
  40. Peterson RA, Merino MC (2003) Consumer information search behavior and the internet. Psychol Mark 20(2):99–121CrossRefGoogle Scholar
  41. Sawtooth Software I (2007) 2007 Customer survey results [Online]. Sequim, WA: Sawtooth Software, Inc. http://sawtoothsoftware.com/education/ss/ss27.shtml#ss27survey. Zugegriffen: 21. Nov. 2011Google Scholar
  42. Sawtooth Software I (2011a) The CBC system for choice-based conjoint analysis [Online]. Sequim, WA. http://www.sawtoothsoftware.com/download/techpap/cbctech.pdf. Zugegriffen: 21. Nov. 2011Google Scholar
  43. Sawtooth Software I (2011b) The CBC/HB system for hierarchical Bayes estimation [Online]. Sequim, WA:Sawtooth Software Inc. http://www.sawtoothsoftware.com/download/techpap/hbtech.pdf. Zugegriffen: 21. Nov. 2011Google Scholar
  44. Scharl A, Dickinger A, Murphy J (2005) Diffusion and success factors of mobile marketing. Electron Commer Res Appl 4(2):159–173CrossRefGoogle Scholar
  45. Srinivasan N, Ratchford BT (1991) An empirical test of a model of external search for automobiles. J Consum Res 18(2):233–242CrossRefGoogle Scholar
  46. Stigler GJ (1961) The economics of information. J Polit Econ 69(3):213–225CrossRefGoogle Scholar
  47. Stiglitz JE (1989) Imperfect information in the product market. In: Schmalensee R, Willig RD (Hrsg) Handbook of industrial organization, 1. Aufl. Elsevier, Amsterdam, S 769–847CrossRefGoogle Scholar
  48. Teichert T (2000) Das Latent-Class Verfahren zur Segmentierung von wahlbasierten Conjoint-Daten. Mark – Z Forsch Prax 22(3):227–239Google Scholar
  49. Thaler RH (1985) Mental accounting and consumer choice. Mark Sci 4(3):199–214CrossRefGoogle Scholar
  50. Timpf S (2008) „Location-based Services“ – Personalisierung mobiler Dienste durch Verortung. Informatik-Spektrum 31(1):70–74CrossRefGoogle Scholar
  51. Train K (2003) Discrete choice methods with simulation, 1. Aufl. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  52. Tversky A, Kahneman D (1981) The framing of decisions and the psychology of choice. Science 211(4481):453–458CrossRefGoogle Scholar
  53. Verhoef PC, Neslin SA, Vroomen B (2007) Multichannel customer management: understanding the research-shopper phenomenon. Int J Res Mark 24(2):129–148CrossRefGoogle Scholar
  54. Wauters R (2010) Mobile location-based services could rake in $12.7 Billion by 2014: report [Online]: TechCrunch. http://techcrunch.com/2010/02/23/location-based-services-revenue/. Zugegriffen: 2. Jan. 2012Google Scholar
  55. Weitzman ML (1979) Optimal search for the best alternative. Econometrica 47(3):641–654CrossRefGoogle Scholar
  56. White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817–838CrossRefGoogle Scholar
  57. Xu H, Teo H-H, Tan BCY, Agarwal R (2009) The role of push-pull technology in privacy calculus: the case of location-based services. J Manag Inf Syst 26(3):135–174Google Scholar
  58. Xue M, Kalnis P, Pung H (2009) Location diversity: enhanced privacy protection in location based services – location and context awareness. In: Choudhury T, Quigley A, Strang T, Suginuma K (Hrsg) 4th international symposium on location and context awareness 2009, Tokyo, Japan. Springer, Berlin, S 70–87Google Scholar

Copyright information

© Gabler Verlag 2012

Authors and Affiliations

  1. 1.Fakultät für Betriebswirtschaft, Institut für Electronic Commerce und Digitale MärkteLudwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations