Advertisement

Journal of Business Economics

, Volume 77, Issue 6, pp 675–695 | Cite as

Einfluss der Nutzung des Online-Bankings auf das Produktnutzungsverhalten und die Profitabilität von Bankkunden

  • Sonja GenslerEmail author
  • Bernd Skiera
  • Martin Böhm
Forschung

Zusammenfassung

Um die Vorteilhaftigkeit des Vertriebskanals Online-Banking beurteilen zu können, ist die Ermittlung des Effekts der Online-Banking Nutzung auf die Profitabilität der Kunden entscheidend.

Die Ermittlung dieses Effekts ist mit Hilfe eines einfachen Mittelwertvergleichs jedoch nicht möglich, da sich Kunden selbst entscheiden, ob sie das Online-Banking nutzen wollen. Dies kann dazu führen, dass sich die Gruppe der Kunden, die das Online-Banking nutzt, und die Gruppe jener Kunden, die das Online-Banking nicht nutzt, in ihrer Struktur systematisch unterscheidet. Somit können neben dem Kanaleffekt, also dem Effekt der Online-Banking Nutzung auf die Profitabilität, erhebliche Selbstselektionseffekte vorliegen. Die Trennung von Kanaleffekt und Selbstselektionseffekt ist mit Hilfe der Matching-Methode möglich. Aus diesem Grund wird diese Methode angewendet, um eine Evaluierung des Effekts der Online-Banking Nutzung auf das Produktnutzungsverhalten und die Profitabilität von Bankkunden vorzunehmen. Die Ergebnisse einer groß angelegten empirischen Studie zeigen, dass die Online-Banking Nutzung zu einer Veränderung des Produktnutzungsverhaltens und zu einer Steigerung der Profitabilität von Bankkunden führt.

Impact of online-banking use on product usage and customer profitability

Summary

In order to evaluate the advantageousness of online-banking, it is necessary to determine the effect of online-banking use on customer profitability. A simple mean comparison does not achieve this aim because customers select themselves into the use of online-banking.

As a consequence, the group of customers using online banking might be distinct from the group of customers not using online-banking. Profitability differences between these groups might therefore not only be due to the channel effect, the effect of online-banking use on customer profitability, but as well due to a self-selection effect. Isolating this self-selection effect can be achieved by using the matching method. This method will therefore be used in order to evaluate the effect of online-banking use on customers’ product usage behavior and on customer profitability. The results of a large empirical study indicate that the use of online-banking induces a change in customers’ product usage behavior and an increase in customer profitability of banking customers.

Keywords

Self-selection financial services online-banking customer profitability matching method 

JEL

M30 031 G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amemiya, T. (1984), “Tobit Models: A Survey”, Journal of Econometrics, 24, 3–61.CrossRefGoogle Scholar
  2. Ansari, A./ Mela, C./ Neslin, S. (2006), “Customer Channel Migration”, Arbeitspapier, Dartmouth College.Google Scholar
  3. Brieger, S./ Haas, H. (2002), “Online-Banking versus Filiale: Was ist ein Online-Kunde wert?”, Bank und Markt, 10, 37.Google Scholar
  4. Bryson / Dorsett / Purdon (2002), “The Union Membership Wage Premium: An Analysis Using Propensity Score Matching”, Arbeitspapier Nr. 530, Centre for Economic Performance, London.Google Scholar
  5. Caliendo, M./ Kopeinig, S. (2005), “Some Practical Guidance for the Implementation of Propensity Score Matching”, IZA Discussion Paper No. 1588, Bonn.Google Scholar
  6. Campbell, D./ Frei, F. (2005), “The Cost Structure, Customer Profitability, and Retention Implications of Self-Service Distribution Channels: Evidence from Customer Behavior in an Online Banking Channel”, Arbeitspapier, Harvard Business School.Google Scholar
  7. Clement, M./ Christensen, B./ Albers, S./ Guldner, S. (2007), „Was bringt ein Oscar im Filmgeschäft? Eine empirische Analyse unter Berücksichtigung des Selektionseffekts“, Zeitschrift für betriebswirtschaftliche Forschung, 59, 198–220.CrossRefGoogle Scholar
  8. Colgate, M./ Danaher, P. (2000), “Implementing a Customer Relationship Strategy: The Asymmetric Impact of Poor Versus Excellent Execution”, Journal of the Academy of Marketing Science, 28, 375–387.CrossRefGoogle Scholar
  9. D’Agostino, R. (1998), “Tutorial in Biostatics: Propensity Score Methods for Bias Reduction in the Comparison of a Treatment to a Non-Randomized Control Group”, Statistics in Medicine, 17, 2265–2281.CrossRefGoogle Scholar
  10. Danaher, P./ Wilson, I./ Davis, R. (2003), “A Comparison of Online and Offline Consumer Brand Loyalty”, Marketing Science, 22, 461–476.CrossRefGoogle Scholar
  11. Degeratu, A./ Rangaswamy, A./ Wu, J. (2000), “Consumer Choice Behaviour in Online and Traditional Supermarkets: The Effects of Brand Name, Price and Other Search Attributes”, International Journal of Research in Marketing, 17, 55–78.CrossRefGoogle Scholar
  12. Dehejia, R./ Wahba, S. (2002), “Propensity Score-Matching Methods for Nonexperimental Causal Studies”, Review of Economics and Statistics, 84, 151–161.CrossRefGoogle Scholar
  13. Dholakia, R. (2006), “Gender and IT in the Household: Evolving Patterns of Internet Use in the United States”, Information Society, 22, 231–240.CrossRefGoogle Scholar
  14. Ganesh, J./ Arnold, M./ Reynolds, K. (2000), “Understanding the Customer Base of Service Providers: An Examination of the Differences Between Switchers and Stayers”, Journal of Marketing, 64,3, 65–87.CrossRefGoogle Scholar
  15. Gensler, S./ Skiera, B./ Böhm, M. (2005), “Einsatzmöglichkeiten der Matching Methode zur Berücksichtigung von Selbstselektion”, Journal für Betriebswirtschaft, 55, 37–62.CrossRefGoogle Scholar
  16. Hadi, A. (1994), “A Modification of a Method for the Detection of Outliers in Multivariate Samples”, Journal of the Royal Statistical Society (Series B), 56, 393–396.Google Scholar
  17. Hartmann-Wendels, T./ Pfingsten, A./ Weber, M. (2004), “Bankbetriebslehre”, Berlin et al.Google Scholar
  18. Heckman, J. (1974), “Shadow Prices, Market Wages, and Labor Supply”, Econometrica, 42, 679–694.CrossRefGoogle Scholar
  19. Heckman, J. (1976), “The Common Structure of Statistical Models of Truncation, Sample Selection, and Limited Dependent Variables and a Simple Estimator For Such Models”, Annals of Economic and Social Measurement, 5, 475–492.Google Scholar
  20. Hitt, L./ Frei, F. (2002), “Do Better Customers Utilize Electronic Distribution Channels? The Case of PC Banking”, Management Science, 48, 732–748.CrossRefGoogle Scholar
  21. Hujer, R./ Caliendo, M./ Radic, D. (2001), “Nobody Knows... How do different Evaluation Estimators Perform in a Simulated Labour Market Experiment?”, Arbeitspapier, Goethe-Universität Frankfurt.Google Scholar
  22. Hujer, R./ Caliendo, M./ Radic, D. (2003), “Methods and Limitations of Evaluation and Impact Research”, Report on VET Research in Europe, CEDEFOP Project 0730, Frankfurt.Google Scholar
  23. Lambrecht, J. (2005), “Einsatz des Online-Bankings zur Steigerung des Kundenwerts”, Aachen.Google Scholar
  24. Lechner, M. (2002), “Program Heterogeneity and Propensity Score Matching: An Application to the Evaluation of Active Labor Market Policies”, Review of Economics and Statistics, 84, 205–220.CrossRefGoogle Scholar
  25. Lee, L.-F. (2000), “Self-Selection”, in: B. Baltagi (Hrsg.), “A Companion to Theoretical Econometrics”, Malden, 383–409.Google Scholar
  26. Leenheer, J./ van Heerde, H./ Bijmolt, T./ Smidts, A. (2007), “Do Loyalty Programs Really Enhance Behavioral Loyalty? An Empirical Analysis Accounting for Self-Selecting Members”, International Journal of Research in Marketing, 24, 31–47.CrossRefGoogle Scholar
  27. Little, R. (1985), “A Note about Models for Selectivity Bias”, Econometrica, 53, 1469–1474.CrossRefGoogle Scholar
  28. Mithas, S./ Almirall, D./ Krishnan, M. (2006), “Do CRM Systems Cause One-to-One Marketing Effectiveness?”, Statistical Science, 21, 223–233.CrossRefGoogle Scholar
  29. Rosenbaum, P./ Rubin, D. (1983), “The Central Role of the Propensity Score in Observational Studies for Causal Effects”, Biometrika, 70, 41–55.CrossRefGoogle Scholar
  30. Rosenbaum, P./ Rubin, D. (1985), “Constructing a Control Group Using Multivariate Matched Sampling Methods that Incorporate the Propensity Score”, American Statistician, 39, 33–38.Google Scholar
  31. Shankar, V./ Smith, A./ Rangaswamy, A. (2003), “Customer Satisfaction and Loyalty in Online and Offline Environments”, International Journal of Research in Marketing, 20, 153–175.CrossRefGoogle Scholar
  32. Simon, H. (2005), “Der Einfluss des Vertriebskanals Online-Banking auf den Kundenwert”, Frankfurt.Google Scholar
  33. Smith, J. (2000), “A Critical Survey of Empirical Methods for Evaluating Active Labor Market Policies”, Schweizerische Zeitschrift für Volkswirtschaft und Statistik, 136, 1–22.Google Scholar
  34. Smith, J./ Todd, P. (2005), “Does Matching Overcome LaLonde’s Critique of Nonexperimental Estimators?”, Journal of Econometrics, 125, 305–353.CrossRefGoogle Scholar
  35. Sullivan, U./ Thomas, J. (2004), “Customer Migration: An Empirical Investigation Across Multiple Channels”, Arbeitspapier, Northwestern University.Google Scholar
  36. van Meer, G. (2006), “Customer Development and Retention on a Web-Banking Site”, Journal of Interactive Marketing, 20, 58–64.CrossRefGoogle Scholar
  37. Wooldridge, J. (2003), “Introductory Econometrics: A Modern Approach”, Mason.Google Scholar
  38. Zhao, Z. (2004), “Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence”, Review of Economics and Statistics, 86, 91–107.CrossRefGoogle Scholar

Copyright information

© Gabler-Verlag 2007

Authors and Affiliations

  1. 1.Professur für Electronic CommerceJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  2. 2.Department of MarketingInstituto de EmpresaMadridSpain

Personalised recommendations