Cognitive Neurodynamics

, Volume 12, Issue 6, pp 607–614 | Cite as

Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation

  • Fatemeh Parastesh
  • Karthikeyan Rajagopal
  • Anitha Karthikeyan
  • Ahmed Alsaedi
  • Tasawar Hayat
  • Viet-Thanh PhamEmail author
Original Research


The last two decades have seen many literatures on the mathematical and computational analysis of neuronal activities resulting in many mathematical models to describe neuron. Many of those models have described the membrane potential of a neuron in terms of the leakage current and the synaptic inputs. Only recently researchers have proposed a new neuron model based on the electromagnetic induction theorem, which considers inner magnetic fluctuation and external electromagnetic radiation as a significant missing part that can participate in neural activity. While the flux coupling of the membrane is considered equivalent to a memductance function of a memristor, standard memductance model of \(\alpha + 3\beta \phi^{2}\) has been used in the literatures, but in this paper we propose a new memductance function based on discontinuous flux coupling. Various dynamical properties of the neuron model with discontinuous flux coupling are studied and interestingly the proposed model shows hyperchaotic behavior which was not identified in the literatures. Furthermore, we consider a ring network of the proposed model and investigate whether the chimera state can emerge. The chimera state relates to the state with simultaneously coherence and incoherence in oscillatory networks and has received much attention in recent years.


HR model Discontinuous flux Bifurcation Hyperchaos Chimera state 


  1. Abrams DM, Strogatz SH (2004) Chimera states for coupled oscillators. Phys Rev Lett 93:174102CrossRefGoogle Scholar
  2. Belykh V, Belykh I, Colding-Jørgensen M, Mosekilde E (2000) Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models. Eur Phys J E 3:205–219CrossRefGoogle Scholar
  3. Braun HA, Schäfer K, Voigt K, Peters R, Bretschneider F, Pei X et al (1997) Low-dimensional dynamics in sensory biology 1: thermally sensitive electroreceptors of the catfish. J Comput Neurosci 4:335–347CrossRefGoogle Scholar
  4. Braun HA, Schwabedal J, Dewald M, Finke C, Postnova S, Huber MT et al (2011) Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model. Chaos Interdiscip J Nonlinear Sci 21:047509CrossRefGoogle Scholar
  5. Coombes S, Osbaldestin AH (2000) Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator. Phys Rev E 62:4057CrossRefGoogle Scholar
  6. Dtchetgnia Djeundam S, Yamapi R, Kofane T, Aziz-Alaoui M (2013) Deterministic and stochastic bifurcations in the Hindmarsh–Rose neuronal model. Chaos Interdiscip J Nonlinear Sci 23:033125CrossRefGoogle Scholar
  7. Dudkowski D, Maistrenko Y, Kapitaniak T (2014) Different types of chimera states: an interplay between spatial and dynamical chaos. Phys Rev E 90:032920CrossRefGoogle Scholar
  8. Dudkowski D, Maistrenko Y, Kapitaniak T (2016) Occurrence and stability of chimera states in coupled externally excited oscillators. Chaos Interdiscip J Nonlinear Sci 26:116306CrossRefGoogle Scholar
  9. González-Miranda JM (2003) Observation of a continuous interior crisis in the Hindmarsh–Rose neuron model. Chaos Interdiscip J Nonlinear Sci 13:845–852CrossRefGoogle Scholar
  10. González-Miranda J (2007) Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int J Bifurc Chaos 17:3071–3083CrossRefGoogle Scholar
  11. Gu H, Yang M, Li L, Liu Z, Ren W (2003) Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios. Phys Lett A 319:89–96CrossRefGoogle Scholar
  12. Gu H, Pan B, Chen G, Duan L (2014) Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn 78:391–407CrossRefGoogle Scholar
  13. Hindmarsh JL, Rose R (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B 221:87–102CrossRefGoogle Scholar
  14. Hizanidis J, Kanas VG, Bezerianos A, Bountis T (2014) Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models. Int J Bifurc Chaos 24:1450030CrossRefGoogle Scholar
  15. Innocenti G, Morelli A, Genesio R, Torcini A (2007) Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos Interdiscip J Nonlinear Sci 17:043128CrossRefGoogle Scholar
  16. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070CrossRefGoogle Scholar
  17. Kapitaniak T, Kuzma P, Wojewoda J, Czolczynski K, Maistrenko Y (2014) Imperfect chimera states for coupled pendula. Sci Rep 4:6379CrossRefGoogle Scholar
  18. Lu Q, Gu H, Yang Z, Shi X, Duan L, Zheng Y (2008) Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mech Sin 24:593–628CrossRefGoogle Scholar
  19. Lv M, Ma J (2016) Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205:375–381CrossRefGoogle Scholar
  20. Lv M, Wang C, Ren G, Ma J, Song X (2016) Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn 85:1479–1490CrossRefGoogle Scholar
  21. Ma J, Tang J (2015) A review for dynamics of collective behaviors of network of neurons. Sci China Technol Sci 58:2038–2045CrossRefGoogle Scholar
  22. Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn 89:1569–1578CrossRefGoogle Scholar
  23. Ma J, Wang Y, Wang C, Xu Y, Ren G (2017) Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos Solitons Fractals 99:219–225CrossRefGoogle Scholar
  24. Majhi S, Perc M, Ghosh D (2016) Chimera states in uncoupled neurons induced by a multilayer structure. Sci Rep 6:39033CrossRefGoogle Scholar
  25. Majhi S, Perc M, Ghosh D (2017) Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos Interdiscip J Nonlinear Sci 27:073109CrossRefGoogle Scholar
  26. Mishra A, Saha S, Ghosh D, Osipov GV, Dana SK (2017) Traveling chimera pattern in a neuronal network under local gap junctional and nonlocal chemical synaptic interactions. Opera Medica Physiol 3:14–18Google Scholar
  27. Moujahid A, d’Anjou A, Torrealdea F, Torrealdea F (2011) Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons. Chaos Solitons Fractals 44:929–933CrossRefGoogle Scholar
  28. Omelchenko I, Provata A, Hizanidis J, Schöll E, Hövel P (2015) Robustness of chimera states for coupled FitzHugh–Nagumo oscillators. Phys Rev E 91:022917CrossRefGoogle Scholar
  29. Parastesh F, Jafari S, Azarnoush H, Hatef B, Bountis A (2018) Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems. Chaos Solitons Fractals 110:203–208CrossRefGoogle Scholar
  30. Schmidt A, Kasimatis T, Hizanidis J, Provata A, Hövel P (2017) Chimera patterns in two-dimensional networks of coupled neurons. Phys Rev E 95:032224CrossRefGoogle Scholar
  31. Storace M, Linaro D, de Lange E (2008) The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos Interdiscip J Nonlinear Sci 18:033128CrossRefGoogle Scholar
  32. Terman D (1991) Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J Appl Math 51:1418–1450CrossRefGoogle Scholar
  33. Terman D (1992) The transition from bursting to continuous spiking in excitable membrane models. J Nonlinear Sci 2:135–182CrossRefGoogle Scholar
  34. Wang X-J (1993) Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D 62:263–274CrossRefGoogle Scholar
  35. Wang Y, Ma J, Xu Y, Wu F, Zhou P (2017) The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int J Bifurc Chaos 27:1750030CrossRefGoogle Scholar
  36. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317CrossRefGoogle Scholar
  37. Yang M, Liu Z, Li L, Xu Y, Liu H, Gu H et al (2009) Identifying distinct stochastic dynamics from chaos: a study on multimodal neural firing patterns. Int J Bifurc Chaos 19:453–485CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Fatemeh Parastesh
    • 1
  • Karthikeyan Rajagopal
    • 2
  • Anitha Karthikeyan
    • 2
  • Ahmed Alsaedi
    • 4
  • Tasawar Hayat
    • 3
    • 4
  • Viet-Thanh Pham
    • 5
    Email author
  1. 1.Biomedical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Center for Nonlinear Dynamics, College of EngineeringDefence UniversityBishoftuEthiopia
  3. 3.Department of MathematicsQuaid-I-Azam University 45320Islamabad 44000Pakistan
  4. 4.NAAM Research GroupKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations