Advertisement

Cognitive Neurodynamics

, Volume 12, Issue 5, pp 501–507 | Cite as

The informational entropy endowed in cortical oscillations

  • Arturo Tozzi
  • James F. Peters
  • Mehmet Niyazi Çankaya
Research Article

Abstract

A two-dimensional shadow may encompass more information than its corresponding three-dimensional object. Indeed, if we rotate the object, we achieve a pool of observed shadows from different angulations, gradients, shapes and variable length contours that make it possible for us to increase our available information. Starting from this simple observation, we show how informational entropies might turn out to be useful in the evaluation of scale-free dynamics in the brain. Indeed, brain activity exhibits a scale-free distribution that leads to the variations in the power law exponent typical of different functional neurophysiological states. Here we show that modifications in scaling slope are associated with variations in Rényi entropy, a generalization of Shannon informational entropy. From a three-dimensional object’s perspective, by changing its orientation (standing for the cortical scale-free exponent), we detect different two-dimensional shadows from different perception angles (standing for Rényi entropy in different brain areas). We show how, starting from known values of Rényi entropy (easily detectable in brain fMRIs or EEG traces), it is feasible to calculate the scaling slope in a given moment and in a given brain area. Because changes in scale-free cortical dynamics modify brain activity, this issue points towards novel approaches to mind reading and description of the forces required for transcranial stimulation.

Keywords

Rényi entropy Power laws Nervous system Scale-free Shadows Central nervous system 

Notes

Acknowledgements

The Authors would like to thank Andrew and Alexander Fingelkurts for commenting upon an earlier version of this manuscript.

References

  1. A-yeh E, Peters JF (2016) Rényi entropy in measuring information levels in Voronoï tessellation cells with application in digital image analysis. Theory Appl Math Comput Sci 6(16):77–95Google Scholar
  2. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59(4):381–384CrossRefPubMedGoogle Scholar
  3. Buiatti M, Papo D, Baudonnière P-M, van Vreeswijk C (2007) Feedback modulates the temporal scale-free dynamics of brain electrical activity in a hypothesis testing task. Neuroscience 146:1400–1412.  https://doi.org/10.1016/j.neuroscience.2007.02.048 CrossRefPubMedGoogle Scholar
  4. Buzsáki G, Watson BO (2012) Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 4:345–367Google Scholar
  5. Cambell LL (1965) A coding theorem and Rényi entropy. Inf Control 8(4):423–429CrossRefGoogle Scholar
  6. Çankaya MN, Bulut YM, Doğru FZ, Arslan O (2015) A bimodal extension of the generalized gamma distribution. Revista Colombiana de Estadística 38(2):371–378CrossRefGoogle Scholar
  7. Carranza ML, Acosta A, Ricotta C (2007) Analyzing landscape diversity in time: the use of Rényi’s generalized entropy function. Ecol Indic 7:505–510CrossRefGoogle Scholar
  8. Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlinear Softw Matter Phys 71(2):021906CrossRefGoogle Scholar
  9. de Arcangelis L, Herrmann HJ (2010) Learning as a phenomenon occurring in a critical state. Proc Natl Acad Sci 107:3977–3981CrossRefPubMedGoogle Scholar
  10. De Luca E, Novelli C, Barbato F, Menegoni P, Iannetta M, Nascetti G (2011) Coastal dune systems and disturbance factors: monitoring and analysis in central Italy. Environ Monit Assess 183:437–450CrossRefPubMedGoogle Scholar
  11. Déli E, Tozzi A, Peters JF (2017) Relationships between short and fast brain timescales. Cogn Neurodyn 11(6):539–552CrossRefPubMedGoogle Scholar
  12. Dong X (2016) The gravity dual of Rényi entropy. Nat Commun 7:12472.  https://doi.org/10.1038/ncomms12472 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Drius M, Malavasi M, Rosario Acosta AT, Ricotta C, Carranza ML (2013) Boundary-based analysis for the assessment of coastal dune landscape integrity over time. Appl Geogr 45:41–48CrossRefGoogle Scholar
  14. Fetterhoff D, Opris I, Simpson SL, Deadwyler SA, Hampson RE, Kraft RA (2014) Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ9-tetrahydrocannabinol administration. J Neurosci Methods.  https://doi.org/10.1016/j.jneumeth.2014.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fingelkurts AA, Fingelkurts AA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2:261–296CrossRefGoogle Scholar
  16. Fingelkurts AA, Fingelkurts AA (2010) Alpha rhythm operational architectonics in the continuum of normal and pathological brain states: current state of research. Int J Psychophysiol 76:93–106CrossRefPubMedGoogle Scholar
  17. Fingelkurts AA, Fingelkurts AA (2015) Operational architectonics methodology for EEG analysis: theory and results. Neuromethods 91:1–59.  https://doi.org/10.1007/7657_2013_60 CrossRefGoogle Scholar
  18. Fingelkurts AA, Fingelkurts AA, Neves CFH (2009) Phenomenological architecture of mind and operational architectonics of the brain: the unified metastable continuum. New Math Nat Comput 5:221–244CrossRefGoogle Scholar
  19. Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space-time. Phys Life Rev 7:195–249CrossRefPubMedGoogle Scholar
  20. Fingelkurts AA, Fingelkurts AA, Neves CFH (2013a) Consciousness as a phenomenon in the operational architectonics of brain organization: criticality and self-organization considerations. Chaos Solitons Fract 55:13–31CrossRefGoogle Scholar
  21. Fingelkurts AA, Fingelkurts AA, Neves CFH (2013b) The structure of brain electromagnetic field relates to subjective experience: Exogenous magnetic field stimulation study. Presented at Neuroscience Finland 2013 meeting: optogenetics and brain stimulation, Helsinki, 22 Mar 2013Google Scholar
  22. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMedGoogle Scholar
  23. Fraiman D, Chialvo DR (2012) What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front Physiol 3:307.  https://doi.org/10.3389/fphys.2012.00307 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gorelick R (2006) Combining richness and abundance into a single diversity index using matrix analogues of Shannon’s and Simpson’s indices. Ecography 29:525–530CrossRefGoogle Scholar
  25. Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J (2016) Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10(1):49–72.  https://doi.org/10.1007/s11571-015-9365-x (Epub 9 Nov 2015) CrossRefPubMedGoogle Scholar
  26. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66(3):353–369.  https://doi.org/10.1016/j.neuron.2010.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hentschel GHE, Proccacia I (1983) The infinite number of generalized dimensions in fractals and strange attractors. Physica D 8(3):435–444CrossRefGoogle Scholar
  28. Jauregui M, Zunino L, Lenzi EK, Mendes RS, Ribeiro HV (2018) Characterization of time series via Rényi complexity-entropy curve. Proc R Soc Lond Ser A Math Phys Eng Sci 498:74–85Google Scholar
  29. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C (2014) On the nature of seizure dynamics. Brain 137(Pt 8):2210–2230.  https://doi.org/10.1093/brain/awu133 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jizba P, Arimitsu T (2001) The world according to Renyi: thermodynamics of fractal systems. AIP Conf Proc 597:341–348CrossRefGoogle Scholar
  31. Jizba P, Korbel J (2014) Multifractal diffusion entropy analysis. Physica A 413:438–458CrossRefGoogle Scholar
  32. Jizba P, Kleinert H, Shefaat M (2012) Rényi information transfer between financial time series. Physica A 391(10):2971CrossRefGoogle Scholar
  33. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88(10):2427–2439CrossRefGoogle Scholar
  34. Jost L (2010) The relation between evenness and diversity. Diversity 2:207–232CrossRefGoogle Scholar
  35. Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001) Long-range temporal correlations and scaling behavior in human brain oscillations. J Neurosci 21(4):1370–1377CrossRefPubMedGoogle Scholar
  36. Megam Ngouonkadi EB, Fotsin HB, Nono MK, Fotso PHL (2016) Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design. Cogn Neurodyn 10(5):385–404.  https://doi.org/10.1007/s11571-016-9393-1 (Epub 11 Jun 2016) CrossRefPubMedPubMedCentralGoogle Scholar
  37. Milstein J, Mormann F, Fried I, Koch C (2009) Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE 4(2):4338.  https://doi.org/10.1371/journal.pone.0004338 CrossRefGoogle Scholar
  38. Müller F, Hoffmann-Kroll R, Wiggering H (2000) Indicating ecosystem integrity e theoretical concepts and environmental requirements. Ecol Model 130:13–23CrossRefGoogle Scholar
  39. Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46:323–351CrossRefGoogle Scholar
  40. Papo D (2014) Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Front Syst Neurosci 8:112.  https://doi.org/10.3389/fnsys.2014.00112 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Patil GP, Taillie C (2001) A multiscale hierarchical Markov transition matrix model for generating and analyzing thematic raster maps. Environ Ecol Stat 8:5–20CrossRefGoogle Scholar
  42. Perkins TJ, Foxall E, Glass L, Edwards R (2014) A scaling law for random walks on networks. Nat Commun 5:5121.  https://doi.org/10.1038/ncomms6121 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Peters JF (2017) Foundations of computer vision. Computational geometry, visual image structures and object shape recognition. Springer, Berlin.  https://doi.org/10.1007/978-3-319-52483-2 CrossRefGoogle Scholar
  44. Peters JF, Ramanna S (2016) Maximal nucleus clusters in Pawlak paintings. Nerves as approximating tools in visual arts. Proc Fed Conf Comp Sci Info Syst 8:199–202.  https://doi.org/10.15439/2016F004 CrossRefGoogle Scholar
  45. Peters JF, Tozzi A, Ramanna S, İnan E (2017) The human brain from above: an increase in complexity from environmental stimuli to abstractions. Cogn Neurodyn 11(4):391–394CrossRefPubMedPubMedCentralGoogle Scholar
  46. Podani J (1992) Space series analysis: processes reconsidered. Abstracta Botanica 16:25–29Google Scholar
  47. Popivanov D, Stomonyakov V, Minchev Z, Jivkova S, Dojnov P et al (2006) Multifractality of decomposed EEG during imaginary and real visual-motor tracking. Biol Cybern 94:149–156CrossRefPubMedGoogle Scholar
  48. Pritchard WS (1992) The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int J Neurosci 66:119–129CrossRefPubMedGoogle Scholar
  49. Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Front Human Neurosci 7:687CrossRefGoogle Scholar
  50. Rényi A (1961) On measures of entropy and information. In: Proc fourth Berkeley symp math stat and probability, vol I. University of California Press, Berkeley, pp 547–457. MR0132570Google Scholar
  51. Rényi A (1966) On the amount of information in a random variable concerning an event. J Math Sci 1:30–33Google Scholar
  52. Ricotta C, Avena G (2003) On the relationship between Pielou’s evenness and landscape dominance within the context of Hill’s diversity profiles. Ecol Indic 2:361–365CrossRefGoogle Scholar
  53. Rocchini D, Delucchi L, Bacaro G, Cavallini P, Feilhauer H et al (2013) Calculating landscape diversity with information-theory based indices: a GRASS GIS solution. Ecol Inf 17:82–89CrossRefGoogle Scholar
  54. Shalymov DS, Fradkov AL (2016) Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principal. Proc R Soc Lond Ser A Math Phys Eng Sci 472(2185):20150324CrossRefGoogle Scholar
  55. Shannon CE (1948) A mathematical theory of information. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  56. Słomczynski W, Kwapien J, Zyczkowski K (2000) Entropy computing via integration over fractal measures. Chaos 10(1):180–188CrossRefPubMedGoogle Scholar
  57. Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E (2008) Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods 174(2):292–300.  https://doi.org/10.1016/j.jneumeth.2008.06.037 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sunderam S, Chernyy N, Peixoto N, Mason JP, Weinstein SL et al (2009) Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model. J Neural Eng 6(4):046009.  https://doi.org/10.1088/1741-2560/6/4/046009 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tinker J, Velazquez JL (2014) Power law scaling in synchronization of brain signals depends on cognitive load. Front Syst Neurosci 8:73.  https://doi.org/10.3389/fnsys.2014.00073 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tozzi A (2014) Evolution: networks and energy count. Nature 515:343.  https://doi.org/10.1038/515343c CrossRefPubMedGoogle Scholar
  61. Tozzi A (2015) How to turn an oscillation in a pink one. J Theor Biol 377:117–118.  https://doi.org/10.1016/j.jtbi.2015.04.018 CrossRefPubMedGoogle Scholar
  62. Tozzi A, Peters JF (2016) Towards a fourth spatial dimension of brain activity. Cogn Neurodyn 10(3):189–199CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tribukait A, Eiken O (2016) On the time course of short-term forgetting: a human experimental model for the sense of balance. Cogn Neurodyn 10(1):7–22CrossRefPubMedGoogle Scholar
  64. Tsallis C (1988) Possible generalization of Boltzman-Gibbs statistics. J Stat Phys 52(2):479–487CrossRefGoogle Scholar
  65. Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. PNAS 107(42):18179–18184.  https://doi.org/10.1073/pnas.1007841107 CrossRefPubMedGoogle Scholar
  66. Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28:635–666CrossRefPubMedGoogle Scholar
  67. Watanabe T, Masuda N, Megumi F, Kanai R, Rees G (2014) Energy landscape and dynamics of brain activity during human bistable perception. Nat Commun 28(5):4765.  https://doi.org/10.1038/ncomms5765 CrossRefGoogle Scholar
  68. Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J (2008) Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Human Brain Mapp 29(7):791–801.  https://doi.org/10.1002/hbm.20593 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Computational Intelligence LaboratoryUniversity of ManitobaWinnipegCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of ManitobaWinnipegCanada
  3. 3.Department of Mathematics, Faculty of Arts and SciencesAdıyaman UniversityAdıyamanTurkey
  4. 4.Applied Sciences School, Department of International Trading, Department of Statistics, Faculty of Arts and ScienceUsak UniversityUsakTurkey

Personalised recommendations