Advertisement

Random pulse induced synchronization and resonance in uncoupled non-identical neuron models

  • Osamu Nakamura
  • Katsumi TatenoEmail author
Research Article
  • 26 Downloads

Abstract

Random pulses contribute to stochastic resonance in neuron models, whereas common random pulses cause stochastic-synchronized excitation in uncoupled neuron models. We studied concurrent phenomena contributing to phase synchronization and stochastic resonance following induction by a weak common random pulse in uncoupled non-identical Hodgkin–Huxley type neuron models. The common random pulse was selected from a gamma distribution and the degree of synchronization depended on the corresponding shape parameter. Specifically, a low shape parameter of the weak random pulse induced well-synchronized spiking in uncoupled neuron models, whereas a high shape parameter of the weak random pulse or a weak periodic pulse caused low degrees of synchronization. These were improved by concurrent inputs of periodic and random pulses with high shape parameters. Finally, the output pulse was synchronized with the periodic pulse, and the common random pulse revealed periodic responses in the present neuron models.

Keywords

Noise-induced synchronization Stochastic resonance Neural networks Conductance-based model Spiking neurons 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. JP16K05869.

References

  1. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New YorkCrossRefGoogle Scholar
  2. Bulsara A, Jacobs EW, Zhou T, Moss F, Kiss L (1991) Stochastic resonance in a single neuron model: theory and analog simulation. J Theor Biol 152:531–555CrossRefGoogle Scholar
  3. Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–533CrossRefGoogle Scholar
  4. Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365:337–340CrossRefGoogle Scholar
  5. Esfahani RK, Shahbazi F, Samani KA (2012) Noise-induced synchronization in small world networks of phase oscillators. Phys Rev E 86:036204CrossRefGoogle Scholar
  6. Fauve S, Heslot F (1983) Stochastic resonance in a bistable system. Phys Lett A 97:5–7CrossRefGoogle Scholar
  7. Galán RF, Fourcaud-Trocmé N, Ermentrout GB, Urban NN (2006) Correlation-induced synchronization of oscillations in olfactory bulb neurons. J Neurosci 26:3646–3655CrossRefGoogle Scholar
  8. Goldobin DS, Pikovsky A (2006) Antireliability of noise-driven neurons. Phys Rev E 73:061906CrossRefGoogle Scholar
  9. Izhikevich EM (2007) Dynamical systems in neuroscience. The MIT Press, CambridgeGoogle Scholar
  10. Kim SY, Lim W (2017) Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn Neurodyn 11:395–413CrossRefGoogle Scholar
  11. Kim SY, Lim W (2018) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12:315–342CrossRefGoogle Scholar
  12. Kitajo K, Nozaki D, Ward LM, Yamamoto Y (2003) Behavioral stochastic resonance within the human brain. Phys Rev Lett 90:218103CrossRefGoogle Scholar
  13. Kitajo K, Doesburg SM, Yamanaka K, Nozaki D, Ward LM, Yamamoto Y (2007) Noise-induced large-scale phase synchronization of human-brain activity associated with behavioural stochastic resonance. EPL (Europhys Lett) 80:40009CrossRefGoogle Scholar
  14. Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380:165–168CrossRefGoogle Scholar
  15. Liu Q, Tian J (2014) Synchronization and stochastic resonance of the small-world neural network based on the CPG. Cogn Neurodyn 8:217–226CrossRefGoogle Scholar
  16. Longtin A, Bulsara A, Moss F (1991) Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys Rev Lett 67:656–659CrossRefGoogle Scholar
  17. Longtin A, Bulsara A, Pierson D, Moss F (1994) Bistability and the dynamics of periodically forced sensory neurons. Biol Cybern 70:569–578CrossRefGoogle Scholar
  18. Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506CrossRefGoogle Scholar
  19. Mizraji E, Lin J (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11:135–146CrossRefGoogle Scholar
  20. Mochizuki Y, Onaga T, Shimazaki H, Shimokawa T, Tsubo Y, Kimura R, Saiki A, Sakai Y, Isomura Y, Fujisawa S, Shibata K, Hirai D, Furuta T, Kaneko T, Takahashi S, Nakazono T, Ishino S, Sakurai Y, Kitsukawa T, Lee JW, Lee H, Jung MW, Babul C, Maldonado PE, Takahashi K, Arce-McShane FI, Ross CF, Sessle BJ, Hatsopoulos NG, Brochier T, Riehle A, Chorley P, Grün S, Nishijo H, Ichihara-Takeda S, Funahashi S, Shima K, Mushiake H, Yamane Y, Tamura H, Fujita I, Inaba N, Kawano K, Kurkin S, Fukushima K, Kurata K, Taira M, Tsutsui K, Ogawa T, Komatsu H, Koida K, Toyama K, Richmond BJ, Shinomoto S (2016) Similarity in neuronal firing regimes across mammalian species. J Neurosci 36:5736–5747CrossRefGoogle Scholar
  21. Moss F, Douglass JK, Wilkens L, Pierson D, Pantazelou E (1993) Stochastic resonance in an electronic FitzHugh–Nagumo model. Ann N Y Acad Sci 706:26–41CrossRefGoogle Scholar
  22. Nagai K, Nakao H (2009) Experimental synchronization of circuit oscillations induced by common telegraph noise. Phys Rev E 79:036205CrossRefGoogle Scholar
  23. Nagai K, Nakao H, Tsubo Y (2005) Synchrony of neural oscillators induced by random telegraphic currents. Phys Rev E 71:036217CrossRefGoogle Scholar
  24. Neiman AB, Russell DF (2002) Synchronization of noise-induced bursts in noncoupled sensory neurons. Phys Rev Lett 88:138103CrossRefGoogle Scholar
  25. Qin Y, Han C, Che Y, Zhao J (2018) Vibrational resonance in a randomly connected neural network. Cogn Neurodyn 12:509–518CrossRefGoogle Scholar
  26. Schäfer C, Rosenblum MG, Kurths J, Abel H-H (1998) Heartbeat synchronized with ventilation. Nature 392(6673):239–240CrossRefGoogle Scholar
  27. Shimozawa T, Murakami J, Kumagai T (2003) Cricket wind receptors: thermal noise for the highest sensitivity known. In: Barth FG, Humphery JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer, Vienna, pp 145–157CrossRefGoogle Scholar
  28. Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K, Komatsu H, Ogawa T, Koida K, Tanji J, Toyama K (2009) Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput Biol 5:e1000433CrossRefGoogle Scholar
  29. Stacey WC, Durand DM (2000) Stochastic resonance improves signal detection in hippocampal CA1 neurons. J Neurophysiol 83:1394–1402CrossRefGoogle Scholar
  30. Stacey WC, Durand DM (2001) Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J Neurophysiol 86:1104–1112CrossRefGoogle Scholar
  31. Stacey W, Durand D (2002) Noise and coupling affect signal detection and bursting in a simulated physiological neural network. J Neurophysiol 88:2598–2611CrossRefGoogle Scholar
  32. Tateno K, Igarashi J, Ohtubo Y, Nakada K, Miki T, Yoshii K (2011) Network model of chemical-sensing system inspired by mouse taste buds. Biol Cybern 105:21–27CrossRefGoogle Scholar
  33. Teramae J, Tanaka D (2004) Robustness of the Noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93:204103CrossRefGoogle Scholar
  34. van Rossum MCW, Turrigiano GG, Nelson SB (2002) Fast propagation of firing rates through layered networks of noisy neurons. J Neurosci 22:1956–1966CrossRefGoogle Scholar
  35. Ward LM, Doesburg SM, Kitajo K, MacLean SE, Roggeveen AB (2006) Neural synchrony in stochastic resonance, attention, and consciousness. Can J Exp Psychol 60:319–326CrossRefGoogle Scholar
  36. Yao Y, Ma J (2018) Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cogn Neurodyn 12:343–349CrossRefGoogle Scholar
  37. Yoshida M, Hayashi H, Tateno K, Ishizuka S (2002) Stochastic resonance in the hippocampal CA3–CA1 model: a possible memory recall mechanism. Neural Netw 15:1171–1183CrossRefGoogle Scholar
  38. Zhao J, Deng B, Qin Y, Men C, Wang J, Wei X, Sun J (2017) Weak electric fields detectability in a noisy neural network. Cogn Neurodyn 11:81–90CrossRefGoogle Scholar
  39. Zhou C, Kurths J (2003) Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 13:401–409CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushuJapan
  2. 2.Department of Human Intelligence SystemsKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations