Cognitive Neurodynamics

, Volume 10, Issue 6, pp 513–533 | Cite as

Semantic integration by pattern priming: experiment and cortical network model

  • Frédéric Lavigne
  • Dominique Longrée
  • Damon Mayaffre
  • Sylvie Mellet
Research Article


Neural network models describe semantic priming effects by way of mechanisms of activation of neurons coding for words that rely strongly on synaptic efficacies between pairs of neurons. Biologically inspired Hebbian learning defines efficacy values as a function of the activity of pre- and post-synaptic neurons only. It generates only pair associations between words in the semantic network. However, the statistical analysis of large text databases points to the frequent occurrence not only of pairs of words (e.g., “the way”) but also of patterns of more than two words (e.g., “by the way”). The learning of these frequent patterns of words is not reducible to associations between pairs of words but must take into account the higher level of coding of three-word patterns. The processing and learning of pattern of words challenges classical Hebbian learning algorithms used in biologically inspired models of priming. The aim of the present study was to test the effects of patterns on the semantic processing of words and to investigate how an inter-synaptic learning algorithm succeeds at reproducing the experimental data. The experiment manipulates the frequency of occurrence of patterns of three words in a multiple-paradigm protocol. Results show for the first time that target words benefit more priming when embedded in a pattern with the two primes than when only associated with each prime in pairs. A biologically inspired inter-synaptic learning algorithm is tested that potentiates synapses as a function of the activation of more than two pre- and post-synaptic neurons. Simulations show that the network can learn patterns of three words to reproduce the experimental results.


Context Inter-synaptic learning Word occurrence Multiple priming Prospective activity Word meaning 



We thank Benoît Morimont for his assistance in the data collection, and the students of the University of Liège for their participation. This project was supported by a Programme Hubert Curien granted by Wallonie-Bruxelles International and the French Ministry of Foreign Affairs. Frédéric Lavigne, Dominique Longrée, and Damon Mayaffre were supported by a grant from PEPS CNRS and the Université de Nice Sophia Antipolis.


  1. Abeles M (1991) Corticonics. Cambridge University Press, New York, NY. doi: 10.1017/CBO9780511574566
  2. Abernethy M, Coney J (1993) Associative priming in the hemispheres as a function of SOA. Neuropsychologia 31(12):1397–1409PubMedCrossRefGoogle Scholar
  3. Amit DJ, Brunel N, Tsodyks MV (1994) Correlations of cortical hebbian reverberations: theory versus experiment. J Neurosci 14(11):6435–6445PubMedGoogle Scholar
  4. Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7(3):237–252PubMedCrossRefGoogle Scholar
  5. Amit DJ, Bernacchia A, Yakovlev V (2003) Multiple-object working memory—a model for behavioral performance. Cereb Cortex 13(5):435–443PubMedCrossRefGoogle Scholar
  6. Anderson JR (1976) Language, memory, and thought. Lawrence Erlbaum, OxfordGoogle Scholar
  7. Anderson JR (1983a) Retrieval of information from long-term memory. Science 220(4592):25–30PubMedCrossRefGoogle Scholar
  8. Anderson JR (1983b) A spreading activation theory of memory. J Verbal Learn Verbal Behav 22(3):261–295CrossRefGoogle Scholar
  9. Arnott WL, Chenery HJ, Copland DA, Murdoch BE, Silburn PA (2003) The effect of backward masking on direct and indirect semantic priming in patients with Parkinson’s disease and in healthy individuals. Brain Lang 87:101–102CrossRefGoogle Scholar
  10. Balota DA, Paul ST (1996) Summation of activation: evidence from multiple primes that converge and diverge within semantic memory. J Exp Psychol Learn Mem Cogn 22(4):827–845PubMedCrossRefGoogle Scholar
  11. Becker S, Moscovitch M, Behrmann M, Joordens S (1997) Long-term semantic priming: a computational account and empirical evidence. J Exp Psychol Learn Mem Cogn 23(5):1059–1082PubMedCrossRefGoogle Scholar
  12. Beeman M, Friedman RB, Grafman J, Perez E (1994) Summation priming and coarse semantic coding in the right hemisphere. J Cogn Neurosci 6(1):26–45PubMedCrossRefGoogle Scholar
  13. Bennett DJ, McEvoy CL (1999) Mediated priming in younger and older adults mediated priming in younger and older adults. Exp Aging Res 25:141–159PubMedCrossRefGoogle Scholar
  14. Bermeitinger C, Wentura D, Frings C (2011) How to switch on and switch off semantic priming effects for natural and artifactual categories: activation processes in category memory depend on focusing specific feature dimensions. Psychon Bull Rev 8:579–585CrossRefGoogle Scholar
  15. Bernacchia A, La Camera G, Lavigne F (2014) A latch on priming. Front Psychol 5:869. doi: 10.3389/fpsyg.2014.00869 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39PubMedCrossRefGoogle Scholar
  17. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bourjaily M, Miller P (2011a) Excitatory, inhibitory, and structural plasticity produce correlated connectivity in random networks trained to solve paired-stimulus tasks. Front Comput Neurosci 5(37). doi: 10.3389/fncom.2011.00037
  19. Bourjaily M, Miller P (2011b) Synaptic plasticity and connectivity requirements to produce stimulus-pair specific responses in recurrent networks of spiking neurons. PLoS Comput Biol 7(2):e1001091. doi: 10.1371/journal.pcbi.1001091 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bourjaily M, Miller P (2012) Dynapic afferent synapses to decision-making networks improve performance in tasks requiring stimulus association and discrimination. J Neurophysiol 108:513–527PubMedPubMedCentralCrossRefGoogle Scholar
  21. Braitenberg V, Schütz A (1991) Anatomy of the Cortex. Springer-Verlag, Berlin. doi: 10.1007/978-3-662-02728-8
  22. Brodeur DA, Lupker SJ (1994) Investigating the effects of multiple primes: an analysis of theoretical mechanisms. Psychol Res 57(1):1–14CrossRefGoogle Scholar
  23. Brunel N (1996) Hebbian learning of context in recurrent neural networks. Neural Comput 8:1677–1710PubMedCrossRefGoogle Scholar
  24. Brunel N, Latham PE (2003) Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Comput 15(10):2281–2306PubMedCrossRefGoogle Scholar
  25. Brunel N, Lavigne F (2009) Semantic priming in a cortical network model. J Cogn Neurosci 21(12):2300–2319PubMedCrossRefGoogle Scholar
  26. Brunel N, Wang X-J (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11(1):63–85PubMedCrossRefGoogle Scholar
  27. Brunel N, Carusi F, Fusi S (1998) Slow stochastic Hebbian learning of classes of stimuli in a recurrent neural network. Network 9:123–152PubMedCrossRefGoogle Scholar
  28. Chwilla DJ, Kolk HHJ (2005) Accessing world knowledge: evidence from N400 and reaction time priming. Cogn Brain Res 25:589–606CrossRefGoogle Scholar
  29. Chwilla DJ, Kolk HHJ, Mulder G (2000) Mediated priming in the lexical decision task: evidence from event-related potentials and reaction time. J Mem Lang 42:314–341CrossRefGoogle Scholar
  30. Coney J (2002) The effect of associative strength on priming in the cerebral hemispheres. Brain Cogn 50(2):234–241PubMedCrossRefGoogle Scholar
  31. Cree GS, McRae K (2003) Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). J Exp Psychol Gen 132:163–201PubMedCrossRefGoogle Scholar
  32. Cree GS, McRae K, McNorgan C (1999) An attractor model of lexical conceptual processing: simulating semantic priming. Cogn Sci 23(3):371–414CrossRefGoogle Scholar
  33. Curti E, Mongillo G, La Camera G, Amit DJ (2004) Mean field and capacity in realistic networks of spiking neurons storing sparsely coded random memories. Neural Comput 16:2597–2637PubMedCrossRefGoogle Scholar
  34. DeLong KA, Urbach TP, Kutas M (2005) Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nat Neurosci 8(8):1117–1121PubMedCrossRefGoogle Scholar
  35. Erickson CA, Desimone R (1999) Responses of macaque perirhinal neurons during and after visual stimulus association learning. J Neurosci 19(23):10404–10416PubMedGoogle Scholar
  36. Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46:233–253CrossRefGoogle Scholar
  37. Faust M, Kahana A (2002) Priming summation in the cerebral hemispheres: evidence from semantically convergent and semantically divergent primes. Neuropsychologia 40(7):892–901PubMedCrossRefGoogle Scholar
  38. Faust M, Lavidor M (2003) Semantically convergent and semantically divergent priming in the cerebral hemispheres: lexical decision and semantic judgment. Cogn Brain Res 17(3):585–597CrossRefGoogle Scholar
  39. Ferrand L, Alario F-X (1998) Normes d’associations verbales pour 366 noms d’objets concrets. L’Année Psychologique 98:659–709CrossRefGoogle Scholar
  40. Fiser J (2009) Perceptual learning and representational learning in humans and animals. Learn Behav 37(2):141–153. doi: 10.3758/LB.37.2 PubMedCrossRefGoogle Scholar
  41. Fiser J, Aslin RN (2001) Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychol Sci 12:499–504PubMedCrossRefGoogle Scholar
  42. Fiser J, Aslin RN (2005) Encoding multielement scenes: statistical learning of visual feature hierarchies. J Exp Psychol Gen 134:521–537PubMedCrossRefGoogle Scholar
  43. Frishkoff GA (2007) Hemispheric differences in strong versus weak semantic priming: evidence from event-related brain potentials. Brain Lang 100(1):23–43PubMedCrossRefGoogle Scholar
  44. Fusi S, Asaad WF, Miller EK, Wang XJ (2007) A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54:319–333. doi: 10.1016/j.neuron.2007.03.017
  45. Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30(2):319–333PubMedCrossRefGoogle Scholar
  46. Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654.Google Scholar
  47. Gollwitzer PM, Kinney RF (1989) Effects of deliberative and implemental mind-sets on illusion of control. J Pers Soc Psychol 56:531–542CrossRefGoogle Scholar
  48. Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69(1):132–146PubMedPubMedCentralCrossRefGoogle Scholar
  49. Haarmann H, Usher M (2001) Maintenance of semantic information in capacity-limited item short-term memory. Psychon Bull Rev 8(3):568–578PubMedCrossRefGoogle Scholar
  50. Hagoort P, Hald L, Bastiaansen M, Petersson KM (2004) Integration of word meaning and world knowledge in language comprehension. Science 304(5669):438–441PubMedCrossRefGoogle Scholar
  51. Hald LA, Steenbeek-Planting EG, Hagoort P (2007) The interaction of discourse context and world knowledge in online sentence comprehension. Evidence from the N400. Brain Res 1146:210–218PubMedCrossRefGoogle Scholar
  52. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New YorkGoogle Scholar
  53. Hill H, Strube M, Roesch-Ely D, Weisbrod M (2002) Automatic vs. controlled processes in semantic priming—differentiation by event-related potentials. Int J Psychophysiol 44:197–218PubMedCrossRefGoogle Scholar
  54. Hutchison KA (2003) Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychon Bull Rev 10:785–813PubMedCrossRefGoogle Scholar
  55. Hutchinson A, Whitman RD, Abeare C, Raiter J (2003) The unification of mind: integration of hemispheric semantic processing. Brain Lang 87(3):361–368PubMedCrossRefGoogle Scholar
  56. Kamide Y, Altmann G, Haywood L (2003) The time-course of prediction in incremental sentence processing: evidence from anticipatory eye movements. J Mem Lang 49(1):133–156CrossRefGoogle Scholar
  57. Khalkhali S, Wammes J, McRae K (2012) Integrating words that refer to typical sequences of events. Can J Exp Psychol 66(2):106–114. doi: 10.1037/a0027369 PubMedCrossRefGoogle Scholar
  58. Kiefer M (2007) Top-down modulation of unconscious “automatic” processes: a gating framework. Adv Cogn Psychol 3:289–306CrossRefGoogle Scholar
  59. Kiefer M, Martens U (2010) Attentional sensitization of unconscious cognition: task sets modulate subsequent masked semantic priming. J Exp Psychol General 139:464–4889CrossRefGoogle Scholar
  60. Kiefer M, Ahlegian M, Spitzer M (2005) Working memory capacity, indirect semantic priming, and stroop interference: pattern of interindividual prefrontal performance differences in healthy volunteers. Neuropsychology 19(3):332–344PubMedCrossRefGoogle Scholar
  61. Kutas M, DeLong KA, Smith NJ (2011) A look around at what lies ahead: prediction and predictability in language processing. In: Bar M (ed) Predictions in the brain: using our past to generate a future. Oxford Scholarship Online, Oxford, pp 190–207. doi: 10.1093/acprof:oso/9780195395518.003.0065 CrossRefGoogle Scholar
  62. Landauer TK, Foltz PW, Laham D (1998) An introduction to latent semantic analysis. Discourse Process 25:259–284CrossRefGoogle Scholar
  63. Lavigne F (2004) AIM networks : autoincursive memory networks for anticipation toward learned goals. Int J Comput Anticip Syst 8:74–95Google Scholar
  64. Lavigne F, Darmon N (2008) Dopaminergic neuromodulation of semantic priming in a cortical network model. Neuropsychologia 46(13):3074–3087PubMedCrossRefGoogle Scholar
  65. Lavigne F, Denis S (2001) Attentional and semantic anticipations in recurrent neural networks. Int J Comput Anticip Syst 14:196–214Google Scholar
  66. Lavigne F, Denis S (2002) Neural network modeling of learning of contextual constraints on adaptive anticipations. Int J Comput Anticip Syst 12:253–268Google Scholar
  67. Lavigne F, Vitu F (1997) Time course of activatory and inhibitory semantic priming effects in visual word recognition. Int J Psycholinguist 13(3):311–349Google Scholar
  68. Lavigne F, Dumercy L, Darmon N (2011) Determinants of multiple semantic priming: a meta-analysis and spike frequency adaptive model of a cortical network. J Cogn Neurosci 23(6):1447–1474PubMedCrossRefGoogle Scholar
  69. Lavigne F, Dumercy L, Chanquoy L, Mercier B, Vitu-Thibault F (2012) dynamics of the semantic priming shift: behavioral experiments and cortical network model. Cogn Neurodyn 6(6):467–483PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lavigne F, Chanquoy L, Dumercy L, Vitu F (2013) Early dynamics of the semantic priming shift. Adv Cogn Psychol 9(1):1–14PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lavigne F, Avnaïm F, Dumercy L (2014) Inter-synaptic learning of combination rules in a cortical network model. Front Psychol 5:842. doi: 10.3389/fpsyg.2014.00842 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490(7420):397–401. doi: 10.1038/nature11451 PubMedCrossRefGoogle Scholar
  73. Lerner I, Shriki O (2014) Internally and externally driven network transitions as a basis for automatic and strategic processes in semantic priming: theory and experimental validation. Front Psychol 5:314. doi: 10.3389/fpsyg.2014.00314 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lerner I, Bentin S, Shriki O (2012) Spreading activation in an attractor network with latching dynamics: automatic semantic priming revisited. Cogn Sci 36(8):1339–1382. doi: 10.1111/cogs PubMedPubMedCentralCrossRefGoogle Scholar
  75. London M, Hausser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532PubMedCrossRefGoogle Scholar
  76. Longrée D, Mellet S (2013) Le motif : une unité phraséologique englobante? Etendre le champ de la phraséologie de la langue au discours. Langages 189:65–79CrossRefGoogle Scholar
  77. Longrée D, Luong X, Mellet S (2008) Les motifs: un outil pour la caractérisation topologique des textes. In: JADT 2008, Actes des 9èmes Journées internationales d’Analyse statistique des Données Textuelles. Lyon: Presses de l’ENS, vol 2, pp 733–744Google Scholar
  78. Luka BJ, Van Petten C (2014) Prospective and retrospective semantic processing: prediction, time, and relationship strength in event-related potentials. Brain Lang 135:115–129PubMedCrossRefGoogle Scholar
  79. Masson MEJ (1995) A distributed memory model of semantic priming. J Exp Psychol Learn Mem Cogn 21(1):3–23CrossRefGoogle Scholar
  80. Masson MEJ, Besner D, Humphreys GW (1991) A distributed memory model of context effects in word identification. Lawrence Erlbaum Associates Inc, HillsdaleGoogle Scholar
  81. McNamara TP (1992) Theories of priming I: associative distance and Lag. J Exp Psychol Learn Mem Cogn 8(6):1173–1190CrossRefGoogle Scholar
  82. McNamara TP, Altarriba J (1988) Depth of spreading activation revisited: semantic mediated priming occurs in lexical decisions. J Mem Lang 27(5):545–559CrossRefGoogle Scholar
  83. McRae K, de Sa VR, Seidenberg MS (1997) On the nature and scope of featural representations of word meaning. J Exp Psychol: Gen 126:99–130CrossRefGoogle Scholar
  84. McRae K, Ross BH (2004) Semantic memory: some insights from feature-based connectionist attractor networks. Elsevier Academic Press, San DiegoGoogle Scholar
  85. McRae K, Cree GS, Seidenberg MS, McNorgan C (2005) Semantic feature production norms for a large set of living and nonliving things. Behav Res Methods 37:547–559PubMedCrossRefGoogle Scholar
  86. Mellet S, Longrée D (2012) Légitimité d’une unité textométrique: le motif. In: JADT 2012, 11èmes Journées internationales d’Analyse statistique des Données TextuellesGoogle Scholar
  87. Meyer DE, Schvaneveldt RW, Rudy MG (1972) Activation of lexical memory. Meeting of the Psychonomic Society, St LouisGoogle Scholar
  88. Miyashita Y (1988) Neural discharges related to pictorial memory in the primate temporal cortex. Neurosci Res Suppl 7:S16CrossRefGoogle Scholar
  89. Miyashita Y, Chang HS (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331(6151):68–70PubMedCrossRefGoogle Scholar
  90. Mizraji E, Lin J (2015) Modeling spatial-temporal operations with context-dependent associative memories. Cogn Neurodyn 9(5):523–534. doi: 10.1007/s11571-015-9343-3 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mizraji E, Pomi A, Valle-Lisboa JC (2009) Dynamic searching in the brain. Cogn Neurodyn 3(401):414Google Scholar
  92. Mongillo G, Amit DJ, Brunel N (2003) Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network. Eur J Neurosci 18(7):2011–2024PubMedCrossRefGoogle Scholar
  93. Moritz S, Woodward TS, Kuppers D, Lausen A, Schickel M (2003) Increased automatic spreading of activation in thought-disordered schizophrenic patients. Schizophr Res 59:181–186PubMedCrossRefGoogle Scholar
  94. Moss HE, Hare ML, Day P, Tyler LK (1994) A distributed memory model of the associative boost in semantic priming. Connect Sci 6(4):413–427CrossRefGoogle Scholar
  95. Naya Y, Yoshida M, Miyashita Y (2001) Backward spreading of memory-retrieval signal in the primate temporal cortex. Science 291(5504):661–664PubMedCrossRefGoogle Scholar
  96. Naya Y, Yoshida M, Miyashita Y (2003) Forward processing of long-term associative memory in monkey inferotemporal cortex. J Neurosci 23(7):2861–2871PubMedGoogle Scholar
  97. Neely JH (1991) Semantic priming effects in visual word recognition: a selective review of current findings and theories. In: Besner D, Humphreys GW (eds) Basic processes in reading: visual word recognition. Lawrence Erlbaum Associates Inc, Oxford, pp 264–336Google Scholar
  98. Nelson DL, McEvoy CL, Schreiber T (1999) University of South Florida word association, rhyme and word fragment norms. Retrieved 8 Nov 2008, from
  99. Plaut DC (1995) Semantic and associative priming in a distributed attractor network. Paper presented at the 17th annual conference of the cognitive science society, PittsburghGoogle Scholar
  100. Plaut DC, Booth JR (2000) Individual and developmental differences in semantic priming: empirical and computational support for a single-mechanism account of Lexical processing. Psychol Rev 107(4):786–823PubMedCrossRefGoogle Scholar
  101. Poggio T, Edelman S (1990) A network that learns to recognize 3D objects. Nature 343:263–266PubMedCrossRefGoogle Scholar
  102. Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19(13):5493–5505PubMedGoogle Scholar
  103. Randall B, Moss HE, Rodd JM, Greer M, Tyler LK (2004) Distinctiveness and correlation in conceptual structure: behavioral and computational studies. J Exp Psychol Learn Mem Cogn 30(2):393–406PubMedCrossRefGoogle Scholar
  104. Renart A, Moreno R, de la Rocha J, Parga N, Rolls ET (2001) A model of the IT-PF network in object working memory which includes balanced persistent activity and tuned inhibition. Neurocomputing 38–40:1525–1531CrossRefGoogle Scholar
  105. Ricciardi LM (1977) Diffusion processes and related topics on biology. Springer, BerlinCrossRefGoogle Scholar
  106. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025. doi: 10.1038/14819 PubMedCrossRefGoogle Scholar
  107. Rigotti M, Ben Dayan Rubin D, Wang XJ, Fusi S (2010a) Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Front Comput Neurosci 4:24PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rigotti M, Ben Dayan Rubin D, Morrison SE, Salzman CD, Fusi S (2010b) Attractor concretion as a mechanism for the formation of context representations. Neuroimage 52(3):833–847PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, Fusi S (2013) The importance of mixed selectivity in complex cognitive tasks. Nature 497(7451):585–590PubMedPubMedCentralCrossRefGoogle Scholar
  110. Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci 22(21):9475–9489PubMedGoogle Scholar
  111. Romani S, Amit DJ, Mongillo G (2006) Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. J Comput Neurosci 20:201–217PubMedCrossRefGoogle Scholar
  112. Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associates. Nature 354(6349):152–155PubMedCrossRefGoogle Scholar
  113. Salem A (1986) Segments répétés et analyse statitsique des données textuelles. Histoire et mesure 1(2):5–28CrossRefGoogle Scholar
  114. Schvaneveldt RW, Meyer DE (1973) Retrieval and comparison processes in semantic memory. In: Kornblum S (ed) Attention and performance IV. Academic Press, New YorkGoogle Scholar
  115. Sinclair J (1991) Corpus, concordance, collocation. Oxford University Press, OxfordGoogle Scholar
  116. Spence DP, Owens KC (1990) Lexical co-occurrence and association strength. J Psycholing Res 19:317–330CrossRefGoogle Scholar
  117. Spitzer M, Braun U, Maier S, Hermle L, Maher BA (1993) Indirect semantic priming in schizophrenic patients. Schizophr Res 11:71–80PubMedCrossRefGoogle Scholar
  118. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRefGoogle Scholar
  119. Spruyt A, De Houwer J, Hermans D (2009) Modulation of automatic semantic priming by feature-specific attention allocation. J Memory Lang 61:37–54CrossRefGoogle Scholar
  120. Tuckwell HC (1988) Introduction to theoretical neurobiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  121. Van Petten C (2014) Examining the N400 semantic context effect item-by-item: relationship to corpus-based measures of word co-occurrence. Int J Psychophysiol 94:407–419PubMedCrossRefGoogle Scholar
  122. Vergauwe E, Cowan N (2015) A common short-term memory retrieval rate may describe many cognitive procedures. Front Hum Neurosci 7(8):126. doi: 10.3389/fnhum.2014.00126 Google Scholar
  123. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36(5):955–968PubMedCrossRefGoogle Scholar
  124. Weisbrod M, Maier S, Harig S, Himmelsbach U, Spitzer M (1998) Lateralised semantic and indirect semantic priming effects in people with schizophrenia. Br J Psychiatry 172:142–146PubMedCrossRefGoogle Scholar
  125. Whitney C, Grossman M, Kircher TT (2009) The influence of multiple primes on bottom-up and top-down regulation during meaning retrieval: evidence for 2 distinct neural networks. Cereb Cortex 19(11):2548–2560PubMedCrossRefGoogle Scholar
  126. Whitney C, Jefferies E, Kircher T (2010) Heterogeneity of the left temporal lobe in semantic representation and control: priming multiple versus single meanings of ambiguous words. Cereb Cortex 21(4):831–844PubMedPubMedCentralCrossRefGoogle Scholar
  127. Willems RM, Frank SL, Nijhof AD, Hagoort P, van den Bosch A (2016) Prediction during natural language comprehension. Cereb Cortex 26(6):2506–2516PubMedCrossRefGoogle Scholar
  128. Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26(4):1314–1328PubMedCrossRefGoogle Scholar
  129. Xiumin L (2014) Signal integration on the dendrites of a pyramidal neuron model. Cogn Neurodyn 8(1):81–85. doi: 10.1007/s11571-013-9252-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.BCL, UMR 7320 CNRS et Université de Nice-Sophia AntipolisNice Cedex 4France
  2. 2.Université de LiègeLiègeBelgique
  3. 3.Université Côte d’Azur, CNRS, BCLNiceFrance

Personalised recommendations