Cognitive Neurodynamics

, Volume 10, Issue 3, pp 189–199 | Cite as

Towards a fourth spatial dimension of brain activity

  • Arturo TozziEmail author
  • James F. Peters


Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a “hypersphere’s torus”, undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future “glued” together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion—substantiated by recent findings—that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state.


Hypersphere Brain Central nervous system Borsuk-Ulam theorem Fourth dimension Manifold 


  1. Afraimovich V, Tristan I, Varona P, Rabinovich M (2013) Transient dynamics in complex systems: heteroclinic sequences with multidimensional unstable manifolds. Discontin Nonlinearity Complex 2(1):21–41CrossRefGoogle Scholar
  2. Ajilore O et al (2013) Constructing the resting state structural connectome. Front Neuroinform 7:30CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amft M et al (2015) Definition and characterization of an extended social-affective default network. Brain Struct Funct 220:1031–1049CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrews-Hanna JR et al (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann NY Acad Sci 1316:29–52CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barttfeld P et al (2015) Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci USA 112:887–892CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beggs JM, Timme N (2012) Being critical of criticality in the brain. Front Physiol 7(3):163Google Scholar
  7. Borsuk M (1933) Drei s¨atze ¨uber die n-dimensionale euklidische sph¨are. Fundamenta Mathematicae XX:177–190Google Scholar
  8. Borsuk M (1958–1959) Concerning the classification of topological spaces from the standpoint of the theory of retracts. Fund Math XLVI:321–330Google Scholar
  9. Borsuk M (1969) Fundamental retracts and extensions of fundamental sequences. Fund Math 64(1):55–85Google Scholar
  10. Borsuk M, Gmurczyk A (1980) On homotopy types of 2-dimensional polyhedra. Fund Math 109(2):123–142Google Scholar
  11. Cohen MM (1973) A course in simple homotopy theory. Springer, New YorkCrossRefGoogle Scholar
  12. Collins GP (2004) The shapes of space. Sci Am 291:94–103CrossRefPubMedGoogle Scholar
  13. Conway MA, Pleydell-Pearce CW (2000) The construction of autobiographical memories in the self-memory system. Psychol. Rev 107:261–288CrossRefPubMedGoogle Scholar
  14. Dabaghian Y et al (2014) Reconceiving the hippocampal map as a topological template. eLife. doi: 10.7554/eLife.03476 PubMedPubMedCentralGoogle Scholar
  15. de Pasquale F, et al (2015) A dynamic core network and global efficiency in the resting human brain. Cereb Cortex. doi: 10.1093/cercor/bhv185 PubMedGoogle Scholar
  16. Deco G, Jirsa VK (2012) Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci 7:3366–3375CrossRefGoogle Scholar
  17. Domhoff GW, Fox KC (2015) Dreaming and the default network: a review, synthesis, and counterintuitive research proposal. Conscious Cogn 24(33C):342–353CrossRefGoogle Scholar
  18. Fingelkurts AA, Fingelkurts AA (2014) Present moment, past, and future: mental kaleidoscope. Front Psychol 5:395CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMedGoogle Scholar
  20. Fox KC et al (2015) The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111:611–621CrossRefPubMedGoogle Scholar
  21. Fraiman D, Chialvo DR (2012) What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front Physiol 3:307. doi: 10.3389/fphys.2012.00307 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138CrossRefPubMedGoogle Scholar
  23. Garg R et al (2011) Full-brain auto-regressive modeling (FARM) using fMRI. Neuroimage 58:416–441CrossRefPubMedGoogle Scholar
  24. Giblin P (2010) Graphs, surfaces and homology, 3rd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  25. Gorgolewski KJ, et al (2014) A correspondence between individual differences in the brain’s intrinsic functional architecture and the content and form of self-generated thoughts. PLoS One 13, 9(5):e97176Google Scholar
  26. Gravel N et al (2014) Cortical connective field estimates from resting state fMRI activity. Front Neurosci 8:339CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gusnard DA et al (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–4264CrossRefPubMedPubMedCentralGoogle Scholar
  28. Harrison SJ et al (2015) Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109:217–231CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hart V, Segerman H (2014) The Quaternion Group as a Symmetry Group. arXiv:1404.6596v1
  30. Henderson DW (1996) Experiencing geometry on plane and sphere. Prentice Hall. ISBN 978-0-13-373770-7Google Scholar
  31. Henderson DW, Taimina E (2001) Crocheting the hyperplane. Math Intell 23(2):17–28CrossRefGoogle Scholar
  32. Hirvonen J, Palva S (2015) Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness. Hum Brain Mapp. doi: 10.1002/hbm.23033 Google Scholar
  33. Jarman N, Trengove C, Steur E, Tyukin I, van Leeuwen C (2014) Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures. Cogn Neurodyn 8(6):479–497. doi: 10.1007/s11571-014-9288-y CrossRefPubMedPubMedCentralGoogle Scholar
  34. Karahanoglu FI, Van De Ville D (2015) Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat Commun 6:7751CrossRefPubMedPubMedCentralGoogle Scholar
  35. Krantz SG (2009) A guide to topology. The Mathematical Association of America, WashingtonGoogle Scholar
  36. Kucyi A et al (2014) Dynamic functional connectivity of the default mode network tracks daydreaming? Neuroimage 100:471–480CrossRefPubMedGoogle Scholar
  37. Lemaître G (1948) Quaternions et espace elliptique. Acta Pontif Acad Sci 12:57–78Google Scholar
  38. Liu X et al (2013) Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns. Front Syst Neurosci 7:101CrossRefPubMedPubMedCentralGoogle Scholar
  39. Manetti M (2015) Topology. Springer, HeidelbergCrossRefGoogle Scholar
  40. Mao D et al (2015) Low-frequency fluctuations of the resting brain: high magnitude does not equal high reliability. PLoS One 10(6):e0128117CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marsaglia G (1972) Choosing a point from the surface of a sphere. Ann Math Stat 43(2):645–646. doi: 10.1214/aoms/1177692644 CrossRefGoogle Scholar
  42. Matoušek J (2003) Using the Borsuk-Ulam Theorem. Lectures on topological methods in combinatorics and geometry. Springer, BerlinGoogle Scholar
  43. Mitra A et al (2014) Lag structure in resting state fMRI. J Neurophysiol 11:2374–2391CrossRefGoogle Scholar
  44. Mitra A et al (2015) Lag threads organize the brain’s intrinsic activity. Proc Natl Acad Sci USA 112:E2235–E2244CrossRefPubMedPubMedCentralGoogle Scholar
  45. Morewedge CK et al (2014) The (Perceived) Meaning of Spontaneous Thoughts. J Exp Psychol 143:1742–1754CrossRefGoogle Scholar
  46. Nyberg L et al (2010) Consciousness of subjective time in the brain. Proc Natl Acad Sci USA 107:22356–22359CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ozdemir F, Özekes H (2013) On the Homomorphisms of the Lie Groups SU(2) and S3. Abstract Appl Anal. doi: 10.1155/2013/645848
  48. Padhy PK et al (2011) Feature extraction and classification of brain signal. World Acad Sci Eng Tech 55:651–652Google Scholar
  49. Papo D (2014) Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Front Syst Neurosci 8:112CrossRefPubMedPubMedCentralGoogle Scholar
  50. Peters JF (2014) Topology of digital images. Visual pattern discovery in proximity spaces (Intelligent Systems Reference Library, 63), SpringerGoogle Scholar
  51. Philippi CL et al (2015) Damage to the default mode network disrupts autobiographical memory retrieval. Soc Cogn Affect Neurosci 10:318–326CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ponce-Alvarez A et al (2015) Task-driven activity reduces the cortical activity space of the brain: experiment and whole-brain modeling. PLoS Comput Biol 28:e1004445CrossRefGoogle Scholar
  53. Power JD et al (2014) Studying brain organization via spontaneous fMRI signal. Neuron 84:681–696CrossRefPubMedPubMedCentralGoogle Scholar
  54. Raichle ME (2009) A paradigm shift in functional brain imaging. J Neurosci 29:12729–12734CrossRefPubMedGoogle Scholar
  55. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, Fusi S (2013) The importance of mixed selectivity in complex cognitive tasks. Nature 497(7451):585–590. doi: 10.1038/nature12160 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Roberts JA, et al (2015) The contribution of geometry to the human connectome. Neuroimage 10:379–393Google Scholar
  58. Sadtler PT et al (2014) Neural constraints on learning. Nature 512:423–426CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schoenberg PL, Speckens AE (2015) Multi-dimensional modulations of alpha and gamma cortical dynamics following mindfulness-based cognitive therapy in Major Depressive Disorder. Cogn Neurodyn 9(1):13–29. doi: 10.1007/s11571-014-9308-y (Epub 2014 Aug 29) CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sengupta B, Stemmler MB, Friston KJ (2013) Information and efficiency in the nervous system–a synthesis. PLoS Comput Biol 9(7):e1003157. doi: 10.1371/journal.pcbi.1003157 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sporns O (2011) The human connectome: a complex network. Ann NY Acad Sci 1224:109–125CrossRefPubMedGoogle Scholar
  62. Tononi G (2008) Consciousness as Integrated Information: a Provisional Manifesto. Biol Bull 215:216–242CrossRefPubMedGoogle Scholar
  63. Tozzi A (2015) Information processing in the CNS: a supramolecular chemistry? Cogn Neurodyn 9:463–477CrossRefPubMedGoogle Scholar
  64. Watanabe T, Hirose S, Wada H, Imai Y, Machida T, et al (2014) Energy landscapes of resting-state brain networks. Front Neuroinform 25, 8:12. doi: 10.3389/fninf.2014.00012. (eCollection 2014)
  65. Weeks JR (2002) The shape of space, 2nd edn. Marcel Dekker inc., New YorkGoogle Scholar
  66. Willard S (1970) General topology. Dover Pub. Inc, MineolaGoogle Scholar
  67. Zare M, Grigolini P (2013) Criticality and avalanches in neural network. Chaos Solitons Fract 55:80–94. doi: 10.1016/j.chaos.2013.05.009 CrossRefGoogle Scholar
  68. Zhang H, Zhang Y, Xu D, Liu X (2015) Deterministic convergence of chaos injection-based gradient method for training feedforward neural networks. Cogn Neurodyn 9(3):331–340. doi: 10.1007/s11571-014-9323-z (Epub 2015 Jan 1) CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Center for Nonlinear ScienceUniversity of North TexasDentonUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations