Cognitive Neurodynamics

, Volume 10, Issue 1, pp 23–30 | Cite as

Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats

  • Yingshou Xing
  • Yi Qin
  • Wei Jing
  • Yunxiang Zhang
  • Yanran Wang
  • Daqing Guo
  • Yang XiaEmail author
  • Dezhong Yao
Research Article


Patients with temporal lobe epilepsy (TLE) often display cognitive deficits. However, current epilepsy therapeutic interventions mainly aim at how to reduce the frequency and degree of epileptic seizures. Recovery of cognitive impairment is not attended enough, resulting in the lack of effective approaches in this respect. In the pilocarpine-induced temporal lobe epilepsy rat model, memory impairment has been classically reported. Here we evaluated spatial cognition changes at different epileptogenesis stages in rats of this model and explored the effects of long-term Mozart music exposure on the recovery of cognitive ability. Our results showed that pilocarpine rats suffered persisting cognitive impairment during epileptogenesis. Interestingly, we found that Mozart music exposure can significantly enhance cognitive ability in epileptic rats, and music intervention may be more effective for improving cognitive function during the early stages after Status epilepticus. These findings strongly suggest that Mozart music may help to promote the recovery of cognitive damage due to seizure activities, which provides a novel intervention strategy to diminish cognitive deficits in TLE patients.


Status epilepticus Mozart music Morris water maze Cognitive damage 



This work was supported by the National Natural Science Foundation of China (No. 81371636, 81071222, and 61201278), the 111 Project (B12027) and the PCSIRT project. This study was also funded by the Scientific and Technological Research program of Chongqing Municipal Education Commission (No. KJ121309).


  1. Aldenkamp A, Arends J (2004) The relative influence of epileptic EEG discharges, short nonconvulsive seizures, and type of epilepsy on cognitive function. Epilepsia 45:54–63CrossRefPubMedGoogle Scholar
  2. Aoun P, Jones T, Shaw GL, Bodner M (2005) Long-term enhancement of maze learning in mice via a generalized Mozart effect. Neurol Res 27:791–796CrossRefPubMedGoogle Scholar
  3. Bodner M, Muftuler LT, Nalcioglu O et al (2001) FMRI study relevant to the Mozart effect: brain areas involved in spatial-temporal reasoning. Neurol Res 23:683–690CrossRefPubMedGoogle Scholar
  4. Bridgett DJ, Cuevas J (2000) Effects of listening to Mozart and Bach on the performance of a mathematical test. Percept Mot Skills 90(3):1171–1175CrossRefPubMedGoogle Scholar
  5. Brown SR (2013) Emergence in the central nervous system. Cogn Neurodyn 7(3):173–195PubMedCentralCrossRefPubMedGoogle Scholar
  6. Caldwell GN, Riby LM (2006) The effect of music exposure and own genre preference on conscious and unconscious cognitive processes: a pilot ERP study. Conscious Cognit 16:992–996CrossRefGoogle Scholar
  7. Castren E, Zafra F, Thoenen H et al (1992) Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci USA 89(20):9444–9448PubMedCentralCrossRefPubMedGoogle Scholar
  8. Chauvière L, Rafrafi N, Thinus-Blanc C et al (2009) Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. J Neurosci 29(17):5402–5410CrossRefPubMedGoogle Scholar
  9. Chikahisa S, Sei H, Morishima M et al (2006) Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav Brain Res 169(2):312–319CrossRefPubMedGoogle Scholar
  10. Curia G, Longo D, Biagini G et al (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157PubMedCentralCrossRefPubMedGoogle Scholar
  11. Drane DL, Meador KJ (2002) Cognitive and behavioral effects of antiepileptic drugs. Epilepsy Behav 3(5 Suppl):S49–S53CrossRefGoogle Scholar
  12. Eichenbaum H (1999) Conscious awareness, memory and the hippocampus. Nat Neurosci 2:775–776CrossRefPubMedGoogle Scholar
  13. Faure JB, Akimana G, Carneiro JE et al (2013) A comprehensive behavioral evaluation in the lithium–pilocarpine model in rats: effects of carisbamate administration during status epilepticus. Epilepsia 54:1203–1213CrossRefPubMedGoogle Scholar
  14. Foster NA, Valentine ER (2001) The effect of auditory stimulation on autobiographical recall in dementia. Exp Aging Res 27:215–228CrossRefPubMedGoogle Scholar
  15. Howe AG, Levy WB (2007) A hippocampal model predicts a fluctuating phase transition when learning certain trace conditioning paradigms. Cogn Neurodyn 1(2):143–155PubMedCentralCrossRefPubMedGoogle Scholar
  16. Hughes JR (2001) The Mozart effect. Epilepsy Behav 2(5):396–417CrossRefPubMedGoogle Scholar
  17. Hughes JR, Daaboul Y, Fino JJ et al (1998) The ‘Mozart effect’ on epileptiform activity. Clin Electroencephgr 29(3):109–119CrossRefGoogle Scholar
  18. Ivanov VK, Geake JG (2003) The Mozart effect and primary school children. Psychol Music 31:405–413CrossRefGoogle Scholar
  19. Jokeit H, Luerding R, Ebner A (2000) Cognitive impairment in temporal-lobe epilepsy. Lancet 355:1018–1019CrossRefPubMedGoogle Scholar
  20. Kim H, Lee MH, Chang HK et al (2006) Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats. Brain Dev 28(2):109–114CrossRefPubMedGoogle Scholar
  21. Kuester G, Rios L, Ortiz A et al (2010) Effect of music on the recovery of a patient with refractory nonconvulsive status epilepticus. Epilepsy Behav 18(4):491–493CrossRefPubMedGoogle Scholar
  22. Lin LC, Lee WT, Wu HC (2010) Mozart K.448 and epileptiform discharges: effect of ratio of lower to higher harmonics. Epilepsy Res 89:238–245CrossRefPubMedGoogle Scholar
  23. Lin LC, Lee WT, Wang CH et al (2011a) Mozart K.448 acts as a potential add-on therapy in children with refractory epilepsy. Epilepsy Behav 20:490–493CrossRefPubMedGoogle Scholar
  24. Lin LC, Lee WT, Wu HC et al (2011b) The long-term effect of listening to Mozart K.448 decreases epileptiform discharges in children with epilepsy. Epilepsy Behav 21(4):420–424CrossRefPubMedGoogle Scholar
  25. Lin LC, Juan CT, Chang HW et al (2013) Mozart K.448 attenuates spontaneous absence seizure and related high-voltage rhythmic spike discharges in Long Evans rats. Epilepsy Res 104(3):234–240CrossRefPubMedGoogle Scholar
  26. Lin L-C, Ouyang C-S, Chiang C-T et al (2014) Listening to Mozart K.448 decreases electroencephalography oscillatory power associated with an increase in sympathetic tone in adults: a post-intervention study. J R Soc Med Open 5(10):1–7Google Scholar
  27. Maguire J (2012) Music and epilepsy: a critical review. Epilepsia 53(6):947–961CrossRefPubMedGoogle Scholar
  28. Marques CM, Caboclo LO, da Silva TI et al (2007) Cognitive decline in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsy Behav 10:477–485CrossRefPubMedGoogle Scholar
  29. Meador KJ (2002) Cognitive outcomes and predictive factors in epilepsy. Neurology 58(Suppl 5):S21–S26CrossRefPubMedGoogle Scholar
  30. Meador KJ (2006) Cognitive and memory effects of the new antiepileptic drugs. Epilepsy Res 68:63–67CrossRefPubMedGoogle Scholar
  31. Meador KJ, Gilliam FG, Kanner AM et al (2001) Cognitive and behavioral effects of antiepileptic drugs. Epilepsy Behav 2(4 Suppl):SS1–SS17PubMedGoogle Scholar
  32. Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60CrossRefPubMedGoogle Scholar
  33. Özdemir HH, Kara M, Yumrutas O et al (2014) Determination of the effects on learning and memory performance and related gene expressions of clothianidin in rat models. Cogn Neurodyn 8(5):411–416PubMedCentralCrossRefPubMedGoogle Scholar
  34. Pacchetti C, Mancini F, Aglieri R (2000) Active music therapy in Parkinson’s disease: an integrative method for motor and emotional rehabilitation. Psychosom Med 62:386–393CrossRefPubMedGoogle Scholar
  35. Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–284CrossRefPubMedGoogle Scholar
  36. Raglio A, Farina E, Giovagnoli AR (2014) Can music therapy alleviate psychological, cognitive, and behavioral impairment in epilepsy? Epilepsy Behav 31:7–8CrossRefPubMedGoogle Scholar
  37. Rauscher FH (1993) Music and spatial task performance. Nature 365:611CrossRefPubMedGoogle Scholar
  38. Rauscher FH, Robinson KD, Jens JJ (1998) Improved maze learning through early music exposure in rats. Neurol Res 20:427–432PubMedGoogle Scholar
  39. Rutten A, Van Albada M, Silveira DC et al (2002) Memory impairment followingstatus epilepticus in immature rats: time-course and environmental effects. Eur J Neurosci 16(3):501–513CrossRefPubMedGoogle Scholar
  40. Sack O (2006) The power of music. Brain 129:2528–2832CrossRefGoogle Scholar
  41. Särkämö T, Tervaniemi M, Laitinen S et al (2008) Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 131(3):866–876CrossRefPubMedGoogle Scholar
  42. Seth AK (2008) Causal networks in simulated neural systems. Cogn Neurodyn 2(1):49–64PubMedCentralCrossRefPubMedGoogle Scholar
  43. Tellez-Zenteno JF, Hernandez-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 12:1–5CrossRefGoogle Scholar
  44. Turner RP (2004) The acute effect of music on interictal epileptiform discharges. Epilepsy Behav 5:662–668CrossRefPubMedGoogle Scholar
  45. Turski WA, Cavalheiro EA, Schwarz M et al (1983) Limbic seizures produced by pilocarpine in rats: a behavioral, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335CrossRefPubMedGoogle Scholar
  46. Van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198CrossRefPubMedGoogle Scholar
  47. Wagatsuma H, Yamaguchi Y (2007) Neural dynamics of the cognitive map in the hippocampus. Cogn Neurodyn 1(2):119–141PubMedCentralCrossRefPubMedGoogle Scholar
  48. Wieser HG (2004) ILAE Commission on Neurosurgery of Epilepsy. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45:695–714CrossRefPubMedGoogle Scholar
  49. Zhang S (2015) Improvement of cognitive impairment and hallucination by pharmacological and non-pharmacological therapies for a parkinsonism’s disease with dementia. J Neurol Stroke 2(2):00049CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yingshou Xing
    • 1
    • 3
  • Yi Qin
    • 1
  • Wei Jing
    • 1
  • Yunxiang Zhang
    • 1
  • Yanran Wang
    • 1
  • Daqing Guo
    • 1
    • 2
  • Yang Xia
    • 1
    • 2
    Email author
  • Dezhong Yao
    • 1
    • 2
  1. 1.Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Center for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.The School of Electronic Information EngineeringYangtze Normal UniversityChongqing, FulingPeople’s Republic of China

Personalised recommendations