Cognitive Neurodynamics

, Volume 8, Issue 2, pp 111–126

Increase trend of correlation and phase synchrony of microwire iEEG before macroseizure onset

  • Sanqing Hu
  • Jianfen Chi
  • Jianhai Zhang
  • Wanzeng Kong
  • Yu Cao
  • Bin He
Research Article


Micro/macrowire intracranial EEG (iEEG) signals recorded from implanted micro/macroelectrodes in epileptic patients have received great attention and are considered to include much information of neuron activities in seizure transition compared to scalp EEG from cortical electrodes. Microelectrode is contacted more close to neurons than macroelectrode and it is more sensitive to neuron activity changes than macroelectrode. Microwire iEEG recordings are inevitably advantageous over macrowire iEEG recordings to reveal neuronal mechanisms contributing to the generation of seizures. In this study, we investigate the seizure generation from microwire iEEG recordings and discuss synchronization of microwire iEEGs in four frequency bands: alpha (1−30 Hz), gamma (30−80 Hz), ripple (80–250 Hz), and fast ripple (>250 Hz) via two measures: correlation and phase synchrony. We find that an increase trend of correlation or phase synchrony exists before the macroseizure onset mostly in gamma and ripple bands where the duration of the preictal states varied in different seizures ranging up to a few seconds (minutes). This finding is contrast to the well-known result that a decrease of synchronization in macro domains exists before the macroseizure onset. The finding demonstrates that it is only when the seizure has recruited enough surrounding brain tissue does the signal become strong enough to be observed on the clinical macroelectrode and as a result support the hypothesis of progressive coalescence of microseizure domains. The potential ramifications of such an early detection of microscale seizure activity may open a new window on treatment by making possible disruption of seizure activity before it becomes fully established.


Synchronization Correlation Phase synchrony Independent components Epilepsy Microwire intracranial EEG 


  1. Aarabi A, Wallois F, Grebe R (2008) Does spatiotemporal synchronization of EEG change prior to absence seizures? Brain Res 1188:207–221CrossRefPubMedGoogle Scholar
  2. Andrzejak RG, Kraskov A, Stogbauer H, Mormann F, Kreuz T (2003) Bivariate surrogate techniques: necessity, strengths, and caveats. Phys Rev E 68:066202CrossRefPubMedGoogle Scholar
  3. Arthur JV, Boahen KA (2007) Synchrony in silicon: the gamma rhythm. IEEE Trans Neural Netw 18:1815–1825CrossRefPubMedGoogle Scholar
  4. Behrens CJ, van den Boom LP, de Hoz L, Friedman A, Heinemann U (2005) Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8:1560–1567CrossRefPubMedGoogle Scholar
  5. Blanco JA, Stead M, Krieger A, Viventin J, Marsh WR, Lee KH, Worrell GA, Litt B (2010) Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J Neurophysiol 104:2900–2912PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bragin A, Mody I, Wilson CL, Engel J Jr (2002) Local generation of fast ripples in epileptic brain. J Neurosci 22:2012–2021PubMedGoogle Scholar
  7. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in hippocampus. Science 256:1025–1027CrossRefPubMedGoogle Scholar
  8. Clemens Z, Molle M, Eross L, Barsi P, Halasz P, Born J (2007) Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130:2868–2878CrossRefPubMedGoogle Scholar
  9. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMedGoogle Scholar
  10. Dimitriadis SI, Laskaris NA, Tsirka V, Erimaki S, Vourkas M, Micheloyannis S, Fotopoulos S (2012) A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks. Cogn Neurodyn 6(1):107–113PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dominguez LG, Wennberg RA, Gaetz W, Cheyne D, Snead OC, Velazquez JLP (2005) Enhanced synchrony in epileptiform activity? local versus distant phase synchronization in generalized seizures. J Neurosci 25:8077–8084CrossRefGoogle Scholar
  12. Donos C, Popescu A, Giurgiu L (2011) High frequency EEG signals. Optoelectron Adv Mater Rapid Commun 5:956–959Google Scholar
  13. Feldt S, Osterhage H, Mormann F, Lehnertz K, Zochowski M (2007) Internetwork and intranetwork communications during bursting dynamics: applications to seizure prediction. Phys Rev E 76:021920CrossRefPubMedGoogle Scholar
  14. Fujiwara H, Greiner HM, Lee KH, Holland-Bouley KD, Seo JH, Arthur T, Mangano FT, Leach JL, Rose DF (2012) Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy. Epilepsia 53:1607–1617PubMedCentralCrossRefPubMedGoogle Scholar
  15. Grenier F, Timofeev I, Steriade M (2001) Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J Neurophysiol 86:1884–1898PubMedGoogle Scholar
  16. Guevara R, Velazquez JL, Nenadovic V, Wennberg R, Senjanovic G, Dominguez LG (2005) Phase synchronization measurements using electroencephalographic recordings: what can we really say about neuronal synchrony? Neuroinformatics 3:301–314CrossRefPubMedGoogle Scholar
  17. Hirsch E, Andermann F, Chauvel P, Engel J, Lopesda Silva F, Luders H (2006) Generalized seizures: from clinical phenomenology to underlying systems and networks. John Libbey urotext, UKGoogle Scholar
  18. Hong X, Hong X, Hong X (2012) Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests. IEEE Trans Biomed Eng 59:2254–2263CrossRefGoogle Scholar
  19. Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430CrossRefPubMedGoogle Scholar
  20. Jacobs J, Staba R, Asano E, Otsubo H, Wu J, Zijlmans M, Mohamed I, Kahane P, Dubeau F, Navarro V, Gotman J (2012) High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol 98:302–315PubMedCentralCrossRefPubMedGoogle Scholar
  21. Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J (2006) High-frequency oscillations during human focal seizures. Brain 129:1593–1608CrossRefPubMedGoogle Scholar
  22. Knyazeva MG, Carmeli C, Khadivi A, Ghika J, Meuli R, Frackowiak RS (2013) Evolution of source EEG synchronization in early Alzheimer’s disease. Neurobiol Aging 34:694–705CrossRefPubMedGoogle Scholar
  23. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208CrossRefPubMedGoogle Scholar
  24. LeVan Quyen M, Martinerie J, Navarro V, Boon P, D’Have M, Adam C, Renault B, Varela F, Baulac M (2001) Anticipation of epileptic seizures from standard EEG recordings. Lancet 357:183–188CrossRefGoogle Scholar
  25. Lopesda Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Biomed Eng 50:540–548CrossRefGoogle Scholar
  26. Molinaro N, Barraza P, Carreiras M (2013) Long-range neural synchronization supports fast and efficient reading: EEG correlates of processing expected words in sentences. Neuroimage 72:120–132CrossRefPubMedGoogle Scholar
  27. Mormann F, Andrzejak RG, Kreuz T, Rieke C, David P, Elger CE, Lehnertz K (2003) Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients. Phys Rev E 67:021912CrossRefGoogle Scholar
  28. Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53:173–185CrossRefPubMedGoogle Scholar
  29. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130:314–333CrossRefPubMedGoogle Scholar
  30. Nariai H, Nagasawa T, Juhasz C, Sood S, Chugani HT, Asano E (2011) Statistical mapping of ictal high-frequency oscillations in epileptic spasms. Epilepsia 52:63–74PubMedCentralCrossRefPubMedGoogle Scholar
  31. Ozaki TJ, Sato N, Kitajo K, Someya Y, Anami K, Mizuhara H, Ogawa S, Yamaguchi Y (2012) Traveling EEG slow oscillation along the dorsal attention network initiates spontaneous perceptual switching. Cogn Neurodyn 6(2):185–198PubMedCentralCrossRefPubMedGoogle Scholar
  32. Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25:962–972CrossRefGoogle Scholar
  33. Schevon CA, Trevelyan AJ, Schroeder CE, Goodman RR, McKhann G, Emerson RG (2009) Spatial characterization of interictal high frequency oscillations in epileptic neocortex. Brain 132:3047–3059PubMedCentralCrossRefPubMedGoogle Scholar
  34. Staba RJ, Frighetto L, Behnke EJ, Mathern GW, Fields T, Bragin A, Ogren J, Fried I, Wilson CL, Engel J Jr (2007) Increased fast ripple to ripple ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients. Epilepsia 48:2130–2138CrossRefPubMedGoogle Scholar
  35. Staba RJ, Wilson CL, Bragin A, Fried I, Engel J Jr (2002) Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptihippocampus and entorhinal cortex. J Neurophysiol 88:1743–1752PubMedGoogle Scholar
  36. Stead M, Bower Mark, Brinkmann BH, Lee K, Marsh WR, Meyer FB, Litt B, Gompel JV, Worrell1 GA (2010) Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133:2789–2797PubMedCentralCrossRefPubMedGoogle Scholar
  37. Telenczuk B, Baker SN, Herz AVM, Curio G (2011) High-frequency EEG covaries with spike burst patterns detected in cortical neurons. J Neurophysiol 105:2951–2959PubMedCentralCrossRefPubMedGoogle Scholar
  38. Timofeev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123:299–336CrossRefPubMedGoogle Scholar
  39. Urrestarazu E, Chander R, Dubeau F, Gotman J (2007) Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain 130:2354–2366CrossRefPubMedGoogle Scholar
  40. Urrestarazu E, Jirsch JD, LeVan P, Hall J, Avoli M, Dubeau F, Gotman J (2006) High-frequency intracerebral EEG activity (100–500 Hz) following interictal spikes. Epilepsia 47:1465–1476CrossRefPubMedGoogle Scholar
  41. Usui N, Terada K, Baba K, Matsuda K, Nakamura F, Usu IK, Yamaguchi M, Tottori T, Umeoka S, Fujitani S, Kondo A, Mihara T, Inoue Y (2011) Clinical significance of ictal high frequency oscillations in medial temporal lobe epilepsy. Clin Neurophysiol 122:1693–1700CrossRefPubMedGoogle Scholar
  42. Vialatte FB, Dauwels J, Maurice M, Yamaguchi Y, Cichocki A (2009) On the synchrony of steady state visual evoked potentials and oscillatory burst events. Cogn Neurodyn 3(3):251–261PubMedCentralCrossRefPubMedGoogle Scholar
  43. Worrell GA, Gardner AB, Stead SM, Hu S, Goerss S, Casino GJ, Meyer FB, Marsh R, Litt B (2008) High-frequency oscillations in human temporal lobe simultaneous microwire and clinical macroelectrode recordings. Brain 131:928–937PubMedCentralCrossRefPubMedGoogle Scholar
  44. Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B (2004) High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127:1496–1506CrossRefPubMedGoogle Scholar
  45. Zijlmans M, Jacobs J, Kahn YU, Zelmann R, Dubeau F, Gotman J (2011) Ictal and interictal high frequency oscillations in patients with focal epilepsy. Clin Neurophysiol 122:664–671PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sanqing Hu
    • 1
  • Jianfen Chi
    • 1
  • Jianhai Zhang
    • 1
  • Wanzeng Kong
    • 1
  • Yu Cao
    • 2
  • Bin He
    • 3
  1. 1.College of Computer ScienceHangzhou Dianzi UniversityHangzhouChina
  2. 2.Department of Computer ScienceUniversity of Massachusetts LowellLowellUSA
  3. 3.College of Electronics and Information EngineeringTongji UniversityShanghaiChina

Personalised recommendations