Cognitive Neurodynamics

, Volume 7, Issue 1, pp 1–11 | Cite as

The neural binding problem(s)

  • Jerome Feldman
Review Article


The famous Neural Binding Problem (NBP) comprises at least four distinct problems with different computational and neural requirements. This review discusses the current state of work on General Coordination, Visual Feature-Binding, Variable Binding, and the Subjective Unity of Perception. There is significant continuing progress, partially masked by confusing the different versions of the NBP.


Binding problem Qualia Synchrony 



This work was supported in part by the Office of Naval Research #N000141110416 and the John Templeton Foundation #20631. Very useful suggestions were made by Stan Klein, Christof von der Malsburg, Bill Phillips, Lokendra Shastri, Carter Wendelken, and the referees.


  1. Barlow HB (1986) Why have multiple cortical areas? Vision Res 26:81–90PubMedCrossRefGoogle Scholar
  2. Barrett L, Feldman JA, Mac Dermed L (2008) A (somewhat) new solution to the binding. Neural Comput 20:2361–2378PubMedCrossRefGoogle Scholar
  3. Bouvier S, Treisman A (2010) Visual feature binding requires reentry. Psychol Sci 21:200–204PubMedCrossRefGoogle Scholar
  4. Bressler SL, Scott Kelso JA (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5(1):26–36PubMedCrossRefGoogle Scholar
  5. Brockmole JR, Franconeri SL (eds) (2009) Binding. Visual Cogn 17(1–2):1–292Google Scholar
  6. Browne A, Sun R (2000) Connectionist variable binding. Springer, HeidelbergGoogle Scholar
  7. Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, Wallis JD, Carmena JM (2010) Oscillatory phase coupling coordinates anatomically-dispersed functional cell assemblies. Proc Natl Acad Sci USA 107:17356–17361PubMedCrossRefGoogle Scholar
  8. Cer DM, O’Reilly RC (2006) Neural mechanisms of binding in the hippocampus and neocortex: insights from computational models. In: Zimmer HD, Mecklinger A, Lindenberger U (eds) Handbook of binding and memory: perspectives from cognitive neuroscience. Oxford U Press, OxfordGoogle Scholar
  9. Chalmers D (1996) The conscious mind: in search of a fundamental theory. Oxford U Press, OxfordGoogle Scholar
  10. Chikkerur SS, Serre T, Tan C, Poggio T (2010) What and where: a Bayesian inference theory of attention. Vision Res 50:2233–2247. doi: 10.1016/j.visres.2010.05.13 PubMedCrossRefGoogle Scholar
  11. Di Lollo V (2012) The feature-binding problem is an ill-posed problem. Trends Cogn Sci 16(6):317–321PubMedCrossRefGoogle Scholar
  12. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5:16–25PubMedCrossRefGoogle Scholar
  13. Feldman JA (2006) From molecule to metaphor: a neural theory of language. MIT Press, CambridgeGoogle Scholar
  14. Feldman JA (2010) Ecological expected utility and the mythical neural code. Cogn Neurodyn 4:25–35PubMedCrossRefGoogle Scholar
  15. Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224PubMedCrossRefGoogle Scholar
  16. Hayhoe M, Rothkopf CA (2011) Vision in the natural world. Wiley Interdisciplinary Reviews: Cognitive Science 2:158–166CrossRefGoogle Scholar
  17. Hollingworth A, Rasmussen IP (2010) Binding objects to locations: the relationship between object files and visual working memory. J Exp Psychol Hum Percept Perform 36:543–564PubMedCrossRefGoogle Scholar
  18. Hummel JE (2011) Getting symbols out of a neural architecture. Connect Sci 23:109–118CrossRefGoogle Scholar
  19. Hummel JE, Holyoak KJ, Green C et al (2004) A solution to the binding problem for compositional connectionism. In: Levy SD, Gayler R (eds) Compositional connectionism in cognitive science: papers from the AAAI fall symposium, AAAI Press, Menlo ParkGoogle Scholar
  20. Humphreys GW (2003) Conscious visual representations built from multiple binding processes: evidence from neuropsychology. Prog Brain Res 142:243–255PubMedCrossRefGoogle Scholar
  21. Jackendoff R (2002) Foundations of language. Oxford U Press, OxfordCrossRefGoogle Scholar
  22. Kaas J (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44:107–112PubMedCrossRefGoogle Scholar
  23. Kaas JH, Collins CE (eds) (2003) The primate visual system. CRC Press, Boca RatonGoogle Scholar
  24. Karlsen PJ, Allen RJ, Baddeley AD, Hitch GJ (2010) Binding across space and time in visual working memory. Memory Cogn 38:292–303CrossRefGoogle Scholar
  25. Lennie P (1998) Single units and visual cortical organization. Perception 27:889–935PubMedCrossRefGoogle Scholar
  26. Mack A (2003) Inattentional blindness: looking without seeing. Curr Direct Psychol Sci 12:180–184CrossRefGoogle Scholar
  27. Martinez-Conde S, Krauzlis R, Miller J, Morron C, Williams D, Kowler E (2008) Eye movements and the perception of a clear and stable visual world. J Vision 8(14):1. doi: 10.1167/8.14.i CrossRefGoogle Scholar
  28. Morita M, Morokami S, Morita H (2010) Attribute pair-based visual recognition and memory. PLoS One 5:e9571. doi: 10.1371/journal.pone.0009571 PubMedCrossRefGoogle Scholar
  29. Reynolds JH, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24(19–29):111–125Google Scholar
  30. Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA 104:6424–6429PubMedCrossRefGoogle Scholar
  31. Seymour K, Clifford CW, Logothetis NK, Bartels A (2009) The coding of colour, motion and their conjunction in human visual cortex. Curr Biol 19:177–183PubMedCrossRefGoogle Scholar
  32. Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77PubMedCrossRefGoogle Scholar
  33. Shafritz KM, Gore JC, Marois R (2002) The role of the parietal cortex in visual feature binding. Proc Natl Acad Sci USA 99:10917–10922PubMedCrossRefGoogle Scholar
  34. Shastri L (2002) Episodic memory and cortico-hippocampal interactions. Trends Cogn Sci 6:162–168PubMedCrossRefGoogle Scholar
  35. Shastri L, Ajjanagadde V (1993) From simple associations to systematic reasoning. Behav Brain Sci 16:417–494CrossRefGoogle Scholar
  36. Simons DJ, Rensink RA (2005) Change blindness: past, present, and future. Trends Cog Sci 9:16–20CrossRefGoogle Scholar
  37. Sommer FT (2013) Neural oscillations and synchrony as a mechanism for coding, communication and computation in the visual system. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge (in press)Google Scholar
  38. Treisman A (1999) Solutions to the binding problem: progress through controversy and convergence. Neuron 24:105–125PubMedCrossRefGoogle Scholar
  39. van der Velde F, de Kamps M (2006) Neural blackboard architectures of combinatorial structures in cognition. Behav Brain Sci 29:37–70PubMedGoogle Scholar
  40. Velik R (2010) From single neuron-firing to consciousness–towards the true solution of the binding problem. Neurosci Biobehav Rev 34:993–1001PubMedCrossRefGoogle Scholar
  41. von der Malsburg C (1981) The correlation theory of brain function. MPI Biophysical chemistry report, pp 81–2Google Scholar
  42. von der Malsburg C, Phillips WA, Singer W (2009) Ernst Struengmann Forum, Frankfurt Am Main, Germany. MIT Press, CambridgeGoogle Scholar
  43. Vroomen J, Keetels M (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72:871–884PubMedCrossRefGoogle Scholar
  44. Wendelken C, Shastri L (2004) Multiple instantiation and rule mediation in SHRUTI. Connect Sci 16:211–217CrossRefGoogle Scholar
  45. Whitney D (2009) Neuroscience: toward unbinding the binding problem. Curr Biol 19:251–253CrossRefGoogle Scholar
  46. Wang R, Zhang, Z, Tse CK et al (2011) Neural coding in networks of multi-populations of neural oscillators. Math Comput Simul. doi: 10.1016/j.matcom.2010.10.029
  47. Zhang X, Wang R, Zhang Z (2010) Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population. Neurocomputing 73:2665–2670Google Scholar
  48. Zimmer HD, Mecklinger A, Lindenberger U (eds) (2006) Handbook of binding and memory: perspectives from cognitive neuroscience. Oxford U Press, OxfordGoogle Scholar
  49. Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–684. doi: 10.1038/331679a0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.International Computer Science InstituteBerkeleyUSA
  2. 2.University of California, BerkeleyBerkeleyUSA

Personalised recommendations