Advertisement

Cognitive Neurodynamics

, Volume 6, Issue 4, pp 343–351 | Cite as

Desynchronizing effect of high-frequency stimulation in a generic cortical network model

  • Markus Schütt
  • Jens Christian ClaussenEmail author
Research Article

Abstract

Transcranial electrical stimulation (TCES) and deep brain stimulation are two different applications of electrical current to the brain used in different areas of medicine. Both have a similar frequency dependence of their efficiency, with the most pronounced effects around 100 Hz. We apply superthreshold electrical stimulation, specifically depolarizing DC current, interrupted at different frequencies, to a simple model of a population of cortical neurons which uses phenomenological descriptions of neurons by Izhikevich and synaptic connections on a similar level of sophistication. With this model, we are able to reproduce the optimal desynchronization around 100 Hz, as well as to predict the full frequency dependence of the efficiency of desynchronization, and thereby to give a possible explanation for the action mechanism of TCES.

Keywords

Transcranial electrical stimulation Deep brain stimulation Izhikevich model Desynchronization High-frequency stimulation 

Notes

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (DFG SFB-654 project A8 and Graduate School for Computing in Medicine and Life Science) is gratefully acknowledged.

References

  1. Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137–185CrossRefGoogle Scholar
  2. Ananthanarayanan R, Modha DS (2007) Anatomy of a cortical simulator. In: Supercomputing 07: Proceedings of the ACM/IEEE SC2007 conference on high performance networking and computing. Association for Computing Machinery, New YorkGoogle Scholar
  3. Anderson TR, Hu B, Iremonger K, Kiss ZHT (2006) Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. J Neurosci 26(3):841–850PubMedCrossRefGoogle Scholar
  4. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004a) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophtal Vis Sci 45:702–707CrossRefGoogle Scholar
  5. Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W (2004b) Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 19(10):2888–2892PubMedCrossRefGoogle Scholar
  6. Bellinger SC, Miyazawa G, Steinmetz PN (2008) Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study. J Neural Eng 5:263–274PubMedCrossRefGoogle Scholar
  7. Benabid A, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao D, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62:76–84PubMedCrossRefGoogle Scholar
  8. Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84(2):203–214Google Scholar
  9. Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse. Random Connect Neural Comp 15:509–538Google Scholar
  10. Compte A, Sanchez-Vivez MV, McCormick DA, Wang X-J (2003) Cellular and network mechanisms of slow oscillatory activity (<1Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707–2725PubMedCrossRefGoogle Scholar
  11. Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B (2000) Treatment of DYT1-generalised dystonia by stimulation of the internus globus pallidus. Lancet 355:2220–2221PubMedCrossRefGoogle Scholar
  12. Gang L, Chao Y, Ling L, Lu SC-Y (2005) Uncovering the mechanism(s) of deep brain stimulation. J Phys Conf Ser 13:336–344CrossRefGoogle Scholar
  13. Garcia L, Audin J, D’Alessandro G, Bioulaxc B, Hammond C (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23(25):8743–8751PubMedGoogle Scholar
  14. Geyer JD, Talathi S, Carney PR (2009) Introduction to sleep and polysomnography. In: John L, Greenfield JR, Geyer JD, Carney PR (eds) Reading EEGs: a practical approach, Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  15. Gupta A, Wang Y, Markram H (2000) Organizing principle for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278PubMedCrossRefGoogle Scholar
  16. Hauptmann C, Tass PA (2010) Restoration of segregated, physiological neuronal connectivity by desynchronizing stimulation. J Neural Eng 7:056008Google Scholar
  17. Houeto JL, Karachi C, Mallet L, Pillon B, Yelnik J, Mesnage V, Welter ML, Navarro S, Pelissolo A, Damier P, Pidoux B, Dormont D, Cornu P, Agid Y (2005) Tourettes syndrome and deep brain stimulation. J Neurol Neurosurg Psychiatry 76:992–995PubMedCrossRefGoogle Scholar
  18. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572PubMedCrossRefGoogle Scholar
  19. Izhikevich EM (2004) Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw 15:1063–1070PubMedCrossRefGoogle Scholar
  20. Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245–282PubMedCrossRefGoogle Scholar
  21. Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14:933–944PubMedCrossRefGoogle Scholar
  22. Jensen AL, Durand DM (2007) Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro. J Neural Eng 4:116Google Scholar
  23. Kumar R, Dagher A, Hutchison WD, Lang AE, Lozano AM (1999) Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology 53:871PubMedCrossRefGoogle Scholar
  24. Kuramoto Y (1975) In: Araki H (ed) International symposium on mathematical problems in theoretical physics. Lecture Notes in Physics, vol 30. Springer, New York, p 420Google Scholar
  25. Lian J, Shuai J, Durand DM (2004) Control of phase synchronization of neuronal activity in the rat hippocampus. J Neural Eng 1:46–54PubMedCrossRefGoogle Scholar
  26. Limoge A (1975) An introduction to electroanaesthesia. University Park Press, BaltimoreGoogle Scholar
  27. Limoge A, Robert C, Stanley TH (1999) Transcutaneous cranial electrical stimulation (TCES): a review 1998. Neurosci Biobehav Rev 23:529–538PubMedCrossRefGoogle Scholar
  28. Liu Y, Wang R, Zhang Z, Jiao X (2010) Analysis on stability of neural network in the presence of inhibitory neurons. Cogn Neurodyn 4(1):61–68PubMedCrossRefGoogle Scholar
  29. Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci 95:5323–5328PubMedCrossRefGoogle Scholar
  30. McIntyre CC, Savasta M, Kerkerian-Le Groff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophys 115:1239–1248CrossRefGoogle Scholar
  31. Nuttin B, Gabriëls LA, Cosyns PR, Meyerson BA, Andrewitch S, Sunaert S, Maes A, Dupont P, Gybels JM, Gielen F, Demeulemeester HG (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52(6):1263–1272PubMedCrossRefGoogle Scholar
  32. Obesó JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963CrossRefGoogle Scholar
  33. Pikovsky AS, Rosenblum MG, Osipov GV, Kurths J (1997) Phase synchronization of chaotic oscillators by external driving. Phys D 104:219–238CrossRefGoogle Scholar
  34. Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10(9):1116–1124PubMedCrossRefGoogle Scholar
  35. Sances A Jr, Larson SJ (1975) Electroanesthesia—biomedical and biophysical studies. Academic Press, New YorkGoogle Scholar
  36. Schöll E, Hiller G, Hövel P, Dahlem MA (2009) Time-delayed feedback in neurosystems. Phil Trans R Soc A 367(1891):1079–1096PubMedCrossRefGoogle Scholar
  37. Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleeping states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985PubMedGoogle Scholar
  38. Su Y, Radman T, Vaynsteyn J, Parra LC, Biksom M (2008) Effects of high-freqency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia 49:1586–1593PubMedCrossRefGoogle Scholar
  39. Velasco F, Velasco M, Velasco A, Jimenez F, Marquez I, Rise M (1995) Electrical stimulation of the centralmedian thalamic nucleus in control of seizures: long-term studies. Epilepsia 36:63–71PubMedCrossRefGoogle Scholar
  40. Visser-Vandewalle V (2007) DBS in Tourette syndrome: rationale, current status and future prospects. Acta Neurochir Suppl 97(2):215–222PubMedCrossRefGoogle Scholar
  41. Wang R, Zhang Z (2011) Phase synchronization motion and neural coding in dynamic transmission of neural information. IEEE Trans Neural Netw 22(7):1097–1106PubMedCrossRefGoogle Scholar
  42. Yianni J, Bain P, Giladi N, Auca M, Gregory R, Joint C, Nandi Dm, Stein J, Scott R, Aziz T (2003) Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit. Mov Disord 18:436–442PubMedCrossRefGoogle Scholar
  43. Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F (2009) Non-invasive brain stimulation with low intensity electrical currents: putative mechanisms of action of direct and alternating current stimulation. Neuroscientist (in press)Google Scholar
  44. Zhang X, Wang R, Zhang Z (2010) Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population. Neurocomputing. 73:2665–2670CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute for Neuro- and BioinformaticsUniversität zu LübeckLübeckGermany

Personalised recommendations