Advertisement

Cognitive Neurodynamics

, Volume 6, Issue 3, pp 259–281 | Cite as

A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus

  • Eivind S. Norheim
  • John Wyller
  • Eilen Nordlie
  • Gaute T. EinevollEmail author
Research Article

Abstract

The receptive fields of cells in the lateral geniculate nucleus (LGN) are shaped by their diverse set of impinging inputs: feedforward synaptic inputs stemming from retina, and feedback inputs stemming from the visual cortex and the thalamic reticular nucleus. To probe the possible roles of these feedforward and feedback inputs in shaping the temporal receptive-field structure of LGN relay cells, we here present and investigate a minimal mechanistic firing-rate model tailored to elucidate their disparate features. The model for LGN relay ON cells includes feedforward excitation and inhibition (via interneurons) from retinal ON cells and excitatory and inhibitory (via thalamic reticular nucleus cells and interneurons) feedback from cortical ON and OFF cells. From a general firing-rate model formulated in terms of Volterra integral equations, we derive a single delay differential equation with absolute delay governing the dynamics of the system. A freely available and easy-to-use GUI-based MATLAB version of this minimal mechanistic LGN circuit model is provided. We particularly investigate the LGN relay-cell impulse response and find through thorough explorations of the model’s parameter space that both purely feedforward models and feedback models with feedforward excitation only, can account quantitatively for previously reported experimental results. We find, however, that the purely feedforward model predicts two impulse response measures, the time to first peak and the biphasic index (measuring the relative weight of the rebound phase) to be anticorrelated. In contrast, the models with feedback predict different correlations between these two measures. This suggests an experimental test assessing the relative importance of feedforward and feedback connections in shaping the impulse response of LGN relay cells.

Keywords

LGN Mechanistic Rate model Thalamocortical Corticothalamic Feedback Feedforward Impulse response 

Notes

Acknowledgments

We thank Tom Tetzlaff and Hans E. Plesser for careful reading of the manuscript. This work was supported by the Research Council of Norway under the eScience programme (grant no. 178892).

References

  1. Andolina IM, Jones HE, Wang W, Sillito AM (2007) Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci 104:1685–1690PubMedCrossRefGoogle Scholar
  2. Bhattacharya BM, Coyle D, Maguire LP (2011) A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural Netw 24:631–645PubMedCrossRefGoogle Scholar
  3. Blomquist P, Devor A, Indahl UG, Einevoll GT, Dale AM (2009) Estimation of thalamocortical and intracortical network models from joint thalamic single-electrode and cortical laminar-electrode recordings in the rat barrel system. PLoS Comput Biol 5:e1000328PubMedCrossRefGoogle Scholar
  4. Briggs F, Usrey WM (2005) Temporal properties of feedforward and feedback pathways between the thalamus and visual cortex in ferret. Thalamus Relat Syst 3:133–139PubMedCrossRefGoogle Scholar
  5. Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27:5431–5436PubMedCrossRefGoogle Scholar
  6. Briggs F, Usrey WM (2008) Emerging views of corticothalamic function. Curr Opin Neurobiol 18:403–407PubMedCrossRefGoogle Scholar
  7. Briggs F, Usrey WM (2011) Corticogeniculate feedback and visual processing in the primate. J Physiol 589(1):33–40PubMedCrossRefGoogle Scholar
  8. Cai D, Deangelis G, Freeman R (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78:1045–1061PubMedGoogle Scholar
  9. Carandini M, Horton JC, Sincich LC (2007) Thalamic filtering of retinal spike trains by postsynpatic summation. J Vision 7:1–11CrossRefGoogle Scholar
  10. Casti A, Xiao Y, Kaplan E (2004) Effects of cortical feedback on LGN dynamics. Soc Neurosci Abstracts 409(7)Google Scholar
  11. Casti A, Hayot F, Xiao Y, Kaplan E (2008) A simple model of retina-LGN transmission. J Comp Neurosci 24:235–252CrossRefGoogle Scholar
  12. Cruse H (1997) Neural networks as cynernetic systems. Thieme Verlag, StuttgartGoogle Scholar
  13. Cudeiro J, Sillito AM (1996) Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 490:481–492PubMedGoogle Scholar
  14. Dayan P, Abbott L (2001) Theoretical Neuroscience. The MIT Press, Cambridge, MAGoogle Scholar
  15. DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18:451–458PubMedCrossRefGoogle Scholar
  16. Derrington AM, Fuchs AF (1979) Spatial and temporal properties of x and y cells in the cat lateral geniculate nucleus. J Physiol 293:347–364PubMedGoogle Scholar
  17. Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016PubMedGoogle Scholar
  18. Destexhe A (2000) Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J Physiol (Paris) 94:391–410CrossRefGoogle Scholar
  19. Einevoll G, Heggelund P (2000) Mathematical models for the spatial receptive-field organization of nonlagged X cells in dorsal lateral geniculate nucleus of cat. Vis Neurosci 17:871–885PubMedCrossRefGoogle Scholar
  20. Einevoll GT, Plesser HE (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting grating stimuli. Netw Comp Neural 13:503–530CrossRefGoogle Scholar
  21. Einevoll GT, Plesser HE (2011) Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cogn Neurodyn. doi: 10.1007/s11571-011-9183-8
  22. Enroth-Cugell C, Robson J (1966) The constrast sensitivity of retinal ganglion cells of the cat. J Physiol 181:517–552Google Scholar
  23. Ermentrout B (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Prog Phys 61:353–430CrossRefGoogle Scholar
  24. Gazères N, Borg-Graham LJ, Frégnac Y (1998) A phenomenological model of visually evoked spike trains in cat geniculate nonlagged x-cells. Vis Neurosci 15:1157–1174PubMedCrossRefGoogle Scholar
  25. Geisert EE, Langsetmo A, Spear PD (1981) Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Brain Res 208(2):409–415PubMedCrossRefGoogle Scholar
  26. Gerstner W (2000) Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comp 12:43–89CrossRefGoogle Scholar
  27. Godwin DW, Vaughan JW, Sherman SM (1996) Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. J Neurophysiol 76(3):1800–1816PubMedGoogle Scholar
  28. Guido W, Sherman SM (1998) Response latencies of cells in the cat’s lateral geniculate nucleus are less variable during burst than tonic firing. Vis Neurosci 15:231–237PubMedCrossRefGoogle Scholar
  29. Hayot F, Tranchina D (2001) Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Vis Neurosci 18:865–877PubMedGoogle Scholar
  30. Heeger D (1991) Nonlinear model of neural responses in cat visual cortex. In: MS Landy, JA Movshon (eds) Computational models of visual processing, MIT Press, Cambridge, MA, pp 119–133Google Scholar
  31. Hillenbrand U, van Hemmen LJ (2000) Spatiotemporal adaptation through corticothalamic loops: a hypothesis. Vis Neurosci 17:107–118PubMedCrossRefGoogle Scholar
  32. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMedGoogle Scholar
  33. Jin J, Weng C, Yeh CI, Gordon JA, Ruthazer ES, Stryker MP, Swadlow HA, Alonso JM (2008) On- and off-domains of geniculate afferents in cat primary visual cortex. Nat Neurosci 11:88–94PubMedCrossRefGoogle Scholar
  34. Jing W, Liu W-Z, Gong X-W, Gong H-Q, Liang P-J (2010) Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cogn Neurodyn 3:179–188CrossRefGoogle Scholar
  35. Kaplan E, Marcus S, So YT (1979) Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus. J Physiol 294:561–580PubMedGoogle Scholar
  36. Kaplan E, Mukherjee P, Shapley R (1993) Information filtering in the lateral geniculate nucleus. In: Shapley R, Lam DM-K (eds) Contrast sensitivity, MIT Press, Cambridge, MA, pp 183–200Google Scholar
  37. Kaplan E, Purpura K, Shapley RM (1987) Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J Physiol 391:267–288PubMedGoogle Scholar
  38. Kirkland KL, Gerstein GL (1998) A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vision Res 38:2007–2022PubMedCrossRefGoogle Scholar
  39. Kirkland KL, Sillito AM, Jones HE, West DC, Gerstein GL (2000) Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex. J Neurophysiol 84:1863–1868PubMedGoogle Scholar
  40. Köhn J, Wörgötter F (1996) Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli. Biol Cybern 75(3):199–209PubMedCrossRefGoogle Scholar
  41. Liang L, Wang R, Zhang Z (2010) The modeling and simulation of visuospatial working memory. Cogn Neurodyn 4:359–366PubMedCrossRefGoogle Scholar
  42. Lumer ED, Edelman GM, Tononi G (1997) Neural Dynamics in a model of the thalamocortical System. I Layers, loops and the emergence of fast synchronous rhythms. Cerebral Cortex 7:207–227PubMedCrossRefGoogle Scholar
  43. MacDonald M (1979) Time lags in biological models (Lecture Notes in Biomathematics). Springer, BerlinGoogle Scholar
  44. Marrocco RT, McClurkin JW, Alkire MT (1996) The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells. Brain Res 737(1–2):110–118PubMedCrossRefGoogle Scholar
  45. Marrocco RT, McClurkin JW, Young RA (1982) Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2(2):256–263PubMedGoogle Scholar
  46. Mastronarde DN (1987) Two classes of single-input x-cells in cat lateral geniculate nucleus. i. receptive-field properties and classification of cells. J Neurophysiol 57(2):357–380PubMedGoogle Scholar
  47. Mastronarde DN (1987) Two classes of single-input x-cells in cat lateral geniculate nucleus. ii. retinal inputs and the generation of receptive-field properties. J Neurophysiol 57(2):381–413PubMedGoogle Scholar
  48. Mayer J, Schuster HG, Claussen JC, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99:068102PubMedCrossRefGoogle Scholar
  49. McClurkin JW, Marrocco RT (1984) Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells. J Physiol 348:135–152PubMedGoogle Scholar
  50. McClurkin JW, Optican LM, Richmond BJ (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Vis Neurosci 11(3):601–617PubMedCrossRefGoogle Scholar
  51. McCormick DA, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Natl Acad Sci USA 89:2774–2778PubMedCrossRefGoogle Scholar
  52. Mukherjee P, Kaplan E (1995) Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J Neurophysiol 74:1222–1243PubMedGoogle Scholar
  53. Murphy PC, Sillito AM (1987) Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329(6141):727–729PubMedCrossRefGoogle Scholar
  54. Nordbø O, Wyller J, Einevoll GT (2007) Neural network firing-rate models on integral form: effects of temporal coupling kernels on equilibrium-state stability. Biol Cybern 97(3):195–209PubMedCrossRefGoogle Scholar
  55. Nordlie E, Gewaltig M-O, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456PubMedCrossRefGoogle Scholar
  56. Nordlie E, Tetzlaff T, Einevoll GT (2010) Firing-rate response properties of spiking neurons: beyond the diffusion limit. Front Comput Neurosci 4:459Google Scholar
  57. Oppenheim A, Willsky A (1996) Signals and systems, 2nd ed. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  58. Rodieck R (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5:583–601PubMedCrossRefGoogle Scholar
  59. Ruksenas O, Fjeld IT, Heggelund P (2000) Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input. Vis Neurosci 17:855–870PubMedCrossRefGoogle Scholar
  60. Saglam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cogn Neurodyn 1:25–32CrossRefGoogle Scholar
  61. Satoh S, Usui S (2009) Engineering-approach accelerates computational understanding of V1–V2 neural properties. Cogn Neurodyn 3:1–8PubMedCrossRefGoogle Scholar
  62. Shapley R, Lennie P (1985) Spatial frequency analysis in the visual system. Annu Rev Neurosci 8:547–583PubMedCrossRefGoogle Scholar
  63. Sherman S, Guillery R (2001) Exploring the thalamus. Academic Press, New YorkGoogle Scholar
  64. Sillito AM, Cudeiro J, Murphy PC (1993) Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 93(1):6–16PubMedCrossRefGoogle Scholar
  65. Sillito AM, Jones HE (2002) Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci 357(1428):1739–1752PubMedCrossRefGoogle Scholar
  66. Sillito AM, Jones HE (2004) Feedback systems in visual processing. In: Chalupa LM, Wernes JS (eds) The visual neurosciences, Vol 1, MIT Press, Cambridge, MA, pp 609–624Google Scholar
  67. Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from visual cortex. Nature 369:479–482PubMedCrossRefGoogle Scholar
  68. Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci 18:5908–5927PubMedGoogle Scholar
  69. Troyer TW, Krukowski AE, Miller KD (2002) LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J Neurophysiol 87:2741–2752PubMedGoogle Scholar
  70. Usrey WM, Reppas JB, Reid RC (1999) Specificity and strength of retinogeniculate connections. J Neurophysiol 82(6):3527–3540PubMedGoogle Scholar
  71. Vidyasagar TR, Urbas JV (1982) Orientation sensitivity of cat lgn neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46(2):157–169PubMedCrossRefGoogle Scholar
  72. Wang W, Jones HE, Andolina IM, Sillito AM (2006) Functional alignment of feedback effects from visual cortex to thalamus. Nat Neurosci 9:1330–1336PubMedCrossRefGoogle Scholar
  73. Wang R, Zhang Z (2007) Energy coding in biological neural networks. Cogn Neurodyn 3:203–212CrossRefGoogle Scholar
  74. Wolfe J, Palmer LA (1998) Temporal diversity in the lateral geniculate nucleus of cat. Vis Neurosci 15:653–675PubMedCrossRefGoogle Scholar
  75. Wörgötter F, Nelle E, Li B, Funke K (1998) The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells. J Physiol 509(Pt 3):797–815PubMedCrossRefGoogle Scholar
  76. Yousif N, Denham M (2007) The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Biol Cybern 97(4):269–277PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Eivind S. Norheim
    • 1
  • John Wyller
    • 1
  • Eilen Nordlie
    • 1
  • Gaute T. Einevoll
    • 1
    Email author
  1. 1.CIGENE, Department of Mathematical Sciences and TechnologyNorwegian University of Life SciencesAasNorway

Personalised recommendations