Cognitive Neurodynamics

, Volume 6, Issue 1, pp 89–106 | Cite as

Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns

Research Article

Abstract

Period-doubling bifurcation to chaos were discovered in spontaneous firings of Onchidium pacemaker neurons. In this paper, we provide three cases of bifurcation processes related to period-doubling bifurcation cascades to chaos observed in the spontaneous firing patterns recorded from an injured site of rat sciatic nerve as a pacemaker. Period-doubling bifurcation cascades to period-4 (π(2,2)) firstly, and then to chaos, at last to a periodicity, which can be period-5, period-4 (π(4)) and period-3, respectively, in different pacemakers. The three bifurcation processes are labeled as case I, II and III, respectively, manifesting procedures different to those of period-adding bifurcation. Higher-dimensional unstable periodic orbits (UPOs) can be detected in the chaos, built close relationships to the periodic firing patterns. Case III bifurcation process is similar to that discovered in the Onchidium pacemaker neurons and simulated in theoretical model-Chay model. The extra-large Feigenbaum constant manifesting in the period-doubling bifurcation process, induced by quasi-discontinuous characteristics exhibited in the first return maps of both ISI series and slow variable of Chay model, shows that higher-dimensional periodic behaviors appeared difficult within the period-doubling bifurcation cascades. The results not only provide examples of period-doubling bifurcation to chaos and chaos with higher-dimensional UPOs, but also reveal the dynamical features of the period-doubling bifurcation cascades to chaos.

Keywords

Neural firing pattern Period-doubling bifurcation Chaos Unstable periodic orbits Feigenbaum constant Non-smooth characteristic Quasi-discontinuous characteristic Period-adding bifurcation 

References

  1. Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS (1993) The analysis of observed chaotic data in physical system. Rev Mod Phys 65:1331–1393CrossRefGoogle Scholar
  2. Aihara K, Matsumoto G (1987) Forced oscillations and routines to chaos in the Hodgkin-Huxley axons and squid giant axons. In: Degn H, Holden AV, Olsen LF (eds) Chaos in biological system. Proceddings of a Nato advance research workshop in biological system, Dtffryn House, Cardiff, Wales, December, 1986. Nato ASI series, series A: Life science, vol 138, Plenum press, New York, pp 121–131.Google Scholar
  3. Aihara K, Matsumoto G, Ikegaya Y (1984) Periodic and non-periodic response of a periodically forced Hodgkin-Huxley oscillator. J Theoret Biol 109:249–269CrossRefGoogle Scholar
  4. Auerbach D, Cvitanovic P, Eckmann JP, Gunaratne G (1987) Exploring chaotic motion through periodic orbits. Phys Rev Lett 23:2387–2390CrossRefGoogle Scholar
  5. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat produces disorders of pain sensation like those seen in man. Pain 33:87–109PubMedCrossRefGoogle Scholar
  6. Braun HA, Dewald M, Schäfer K, Voigt K, Pei X, Dolan K, Moss F (1999a) Low-dimensional dynamics in sensory biology 2: facial cold receptors of the rat. J Comput Neurosci 7:17–32PubMedCrossRefGoogle Scholar
  7. Braun HA, Dewald M, Voigt K, Huber M, Pei X, Moss F (1999b) Finding unstable periodic orbits in electroreceptors, cold receptors and hypothalamic neurons. Neurocomputing 26(27):79–86CrossRefGoogle Scholar
  8. Canavier CC, Clark JW, Byrne JH (1990) Routes to chaos in a model of a bursting neuron. Biophys J 57:1245–1251PubMedCrossRefGoogle Scholar
  9. Braun HA, Wissing H, Schäfer K (1994) Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367:270–273PubMedCrossRefGoogle Scholar
  10. Braun HA, Schäfer K, Voigt K, Peters R, Bretschneider F, Pei X, Wilkens L, Moss F (1997) Low-dimensional dynamics in sensory biology 1: thermally sensitive electroreceptors of the catfish. J Comput Neurosci 4:335–347PubMedCrossRefGoogle Scholar
  11. Chay TR (1985) Chaos in a three-variable model of an excitable cell. Physica D 16:233–242CrossRefGoogle Scholar
  12. Chay TR, Fan YS, Lee YS (1995) Bursting, spiking, chaos, fractals and universality in biological rhythms. Intern J Bifur Chaos Appl Sci Eng 5:595–635CrossRefGoogle Scholar
  13. Cvitanovic P (1988) Invariant measurement of strange sets in terms of cycles. Phys Rev Lett 24:2729–2732CrossRefGoogle Scholar
  14. Di Mascio M, Di Giovanni G, Di Matteo V, Esposito E (1999a) Reduced chaos of interspike interval of midbrain dopaminergic neurons in aged rats. Neuroscience 89:1003–1008PubMedCrossRefGoogle Scholar
  15. Di Mascio M, Di Giovanni G, Di Matteo V, Esposito E (1999b) Decreased chaos of midbrain dopaminergic neurons after serotonin denervation. Neuroscience 92:237–243PubMedCrossRefGoogle Scholar
  16. Ditto WL, Spano ML, In V, Neff J, Meadows B, Langberg JJ, Bolmann A, Mcteague K (2000) Control of human atrial fibrillation. Intern J Bifur Chaos Appl Sci Eng 10:593–601Google Scholar
  17. Du Y, Lu QS, Wang RB (2010) Using interspike intervals to quantify noise effects on spike trains in temperature encoding neurons. Cogn Neurodyn 4:199–206PubMedCrossRefGoogle Scholar
  18. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 74:1–47PubMedGoogle Scholar
  19. Fan YS, Chay TR (1994) Generation of periodic and chaotic bursting in an excitable cell model. Biol Cybern 71:417–431PubMedCrossRefGoogle Scholar
  20. Fan YS, Holden AV (1992a) From simple to simple bursting oscillatory behaviour via chaos in the Hindmarsh-Rose model for neuronal activity. Chaos Solitons Fractals 2:221–236CrossRefGoogle Scholar
  21. Fan YS, Holden AV (1992b) From simple to complex bursting oscillatory behaviour via intermittent chaos in the Hindmarsh-Rose model for neuronal activity. Chaos Solitons Fractals 2:349–369CrossRefGoogle Scholar
  22. Fan YS, Holden AV (1993) Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity. Chaos Solitons Fractals 3:439–449CrossRefGoogle Scholar
  23. Farmer JD, Sidorowich JJ (1987) Predicating chaotic series. Phys Rev Lett 59:845–849PubMedCrossRefGoogle Scholar
  24. Faure P, Korn H (1997) A nonrandom dynamic component in the synaptic noise of a central neuron. Proc Natl Acad Sci USA 94:6506–6511PubMedCrossRefGoogle Scholar
  25. Glass L, Mackey MC (1988) From clock to chaos: the rhythm of life. Princeton University Press, PrincetonGoogle Scholar
  26. Gu HG, Ren W, Lu QS, Wu SG, Yang MH, Chen WJ (2001) Integer multiple spiking in neural pacemakers without external periodic stimulation. Phys Lett A 285:63–68CrossRefGoogle Scholar
  27. Gu HG, Yang MH, Li L, Liu ZQ, Ren W (2002) Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. NeuroReport 13:1657–1660PubMedCrossRefGoogle Scholar
  28. Gu HG, Yang MH, Li L, Liu ZQ, Ren W (2003) Dynamics of autonomous stochastic resonance in neural period-adding bifurcation scenarios. Phys Lett A 319:89–96CrossRefGoogle Scholar
  29. Gu HG, Yang MH, Li L, Liu ZQ, Ren W (2004) Chaotic and ASR induced firing pattern in an experimental neural pacemaker. Dyn Contin Discr Impul Syst 11a:19–24Google Scholar
  30. Gu HG, Yang MH, Li L, Ren W, Lu QS (2007) Period adding bifurcation with chaotic and stochastic bursting in an experimental neural pacemaker. Dyn Contin Discr Impul Syst 14(S5):6–11Google Scholar
  31. Gu HG, Jia B, Lu QS (2011a) Exponential decay characteristics of the integer multiple neural firing patterns. Cogn Neurodyn 5:87–101CrossRefGoogle Scholar
  32. Gu HG, Zhang HM, Wei CL, Yang MH, Liu ZQ, Ren W (2011b) Coherence resonance induced stochastic neural firing at a saddle-node bifurcation. Int J Mod Phys B 25:3977–3986CrossRefGoogle Scholar
  33. Gu HG, Zhu Z, Jia B (2011c) Dynamics of a novel chaotic neural firing pattern discovered in experiment and simulated in mathematical model. Acta Phys Sin 60:100505 (in Chinese)Google Scholar
  34. Guevara MR, Glass L, Shrier A (1981) Phase locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 214:1350–1353PubMedCrossRefGoogle Scholar
  35. Guo DQ (2011) Inhibition of rhythmic spiking by colored noise in neural systems. Cogn Neurodyn 5:293–300CrossRefGoogle Scholar
  36. Hayashi H, Ishzuka S (1992) Chaotic nature of bursting discharges in the Onchidium pacemaker neuron. J Theor Biol 156:269–291CrossRefGoogle Scholar
  37. Hayashi H, Ishzuka S (1995) Chaotic response of the hippocamal CA3 region to a mossy fiber stimulation in vitro. Brain Res 686:194–206PubMedCrossRefGoogle Scholar
  38. Hayashi H, Ishzuka S, Ohta M, Hirakawa K (1982) Chaotic behavior in the Onchidium giant neuron. Phys Lett A 88:435–438CrossRefGoogle Scholar
  39. Hayashi H, Ishzuka S, Hirakawa K (1983) Transition to chaos via intermittency in the Onchidium pacemaker neuron. Phys Lett A 98:474–476CrossRefGoogle Scholar
  40. Hayashi H, Ishzuka S, Ohta M, Hirakawa K (1996) Chaos and phase-locked responses of the somatosensory cortex to a periodic medial lemniscus stimulation in an anaesthetized rat. Brain Res 723:46–60PubMedCrossRefGoogle Scholar
  41. Huber MT, Krige JC, Braun HA, Pei X, Neiman A, Moss F (2000) Noisy precursors of bifurcation in a neurodynamical model for disease states of mood disorder. Neurocomputing 32-33:823–831CrossRefGoogle Scholar
  42. Izhikevich EM (2000) Neural excitability, spiking, and bursting. Intern J Bifur Chaos Appl Sci Eng 10:1171–1266CrossRefGoogle Scholar
  43. Izhikevich EM (2007) Dynamical system in neuroscience: the geometry of excitability and bursting. The MIT Press, CambridgeGoogle Scholar
  44. Jia B, Gu HG, Li YY (2011) Coherence resonance induced neuronal firing near a saddle node and homoclinic bifurcation corresponding to type I excitability. Chin Phys Lett 28(9):090507CrossRefGoogle Scholar
  45. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge, England. Tsinghua University Press, Beijing, 2000Google Scholar
  46. Li L, Gu HG, Liu ZQ, Yang MH, Ren W (2003) Bifurcation scenario rhythm in the firing patttern transition of a neural pacemaker. Acta Biophys Sin 19:388–3949 (in Chinese)Google Scholar
  47. Li L, Gu HG, Liu ZQ, Yang MH, Ren W (2004) A series of bifurcation scenarios in the firing pattern transitions in an experimental neural pacemaker. Intern J Bifur Chaos Appl Sci Eng 14:1813–1817CrossRefGoogle Scholar
  48. Lovejoy LP, Shepard PD, Canavier CC (2001) Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic. Neuroscience 104:829–840PubMedCrossRefGoogle Scholar
  49. LeVan Quyen M, Martinerie J, Adam C, Varela FJ (1997) Unstable periodic orbits in human epileptic activity. Phys Rev E 56:3401–3411CrossRefGoogle Scholar
  50. Lu QS, Gu HG, Yang ZQ, Shi X, Duan LX, Zheng YH (2008) Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities. Acta Mech Sin 24:593–628CrossRefGoogle Scholar
  51. Lu QS, Yang ZQ, Duan LX, Gu HG, Ren W (2009) Dynamics and transition of firing patterns in deterministic and stochastic neuronal system. Chaos Solitons Fractals 40:577–597CrossRefGoogle Scholar
  52. Mandelblat Y, Etzion Y, Grossman Y, Golomb D (2001) Period doubling of calcium spike firing in a model of a purkinje cell dendrite. J Comput Neurosci 11:43–62PubMedCrossRefGoogle Scholar
  53. Mo J, Li YY, Wei CL, Yang MH, Liu ZQ, Gu HG, Qu SX, Ren W (2010) Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable. Chin Phys B 19:080513CrossRefGoogle Scholar
  54. Pei X, Moss F (1996) Characterization of low dimensional dynamics in the crayfish caudal photoreceptor. Nature 379:619–621CrossRefGoogle Scholar
  55. Pierson D, Moss F (1995) Detecting periodic unstable points in noisy chaotic and limit cycle attractors with applications to biology. Phys Rev Lett 75:2124–2127PubMedCrossRefGoogle Scholar
  56. Rabinovich MI, Abarbanel HDI (1998) The role of chaos in neural systems. Neuroscience 87:5–14PubMedCrossRefGoogle Scholar
  57. Ren W, Hu SJ, Zhang BJ, Xu JX, Gong YF (1997) Period-adding bifurcation with chaos in the interspike intervals generated by an experimental neural pacemaker. Intern J Bifur Chaos Appl Sci Eng 7:1867–1872CrossRefGoogle Scholar
  58. Ren W, Gu HG, Jian Z, Lu QS, Yang MH (2001) Different classifications of UPOs in the parametrically different chaotic ISI series of a neuronal pacemaker. NeuroReport 12:2121–2124PubMedCrossRefGoogle Scholar
  59. Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Lecture notes in biomathematics. Springer, Berlin, vol 71, pp 267–281Google Scholar
  60. Rinzel J, Lee YS (1987) Dissection of a model for neuronal parabolic bursting. J Math Biol 25:653–675PubMedCrossRefGoogle Scholar
  61. Sauer T (1994) Reconstruction of dynamical system from interspike intervals. Phys Rev Lett 72:3811–3814PubMedCrossRefGoogle Scholar
  62. Schiff SJ, Jerger K, Duong DH, Chang T, Spano ML, Ditto WL (1994) Controlling chaos in the brain. Nature 370:615–620PubMedCrossRefGoogle Scholar
  63. So P, Ott E, Schiff SJ, Kaplan DT, Sauer T, Grebogi C (1996) Detecting unstable periodic orbits in chaotic experimental data. Phys Rev Lett 76:4705–4708PubMedCrossRefGoogle Scholar
  64. So P, Ott E, Sauer T, Gluckman BJ, Grebogi C, Schiff SJ (1997) Extraction unstable periodic orbits from chaotic time series data. Phys Rev E 55:5398–5417CrossRefGoogle Scholar
  65. So P, Francis JT, Netoff TI, Glakman BJ, Schiff SJ (1998) Periodic orbits: A new language for neuronal dynamics. Biophys J 74:2776–2785PubMedCrossRefGoogle Scholar
  66. Tal M, Eliav E (1996) Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 64(3):511–518PubMedCrossRefGoogle Scholar
  67. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate dada. Physica D 58:77–94CrossRefGoogle Scholar
  68. Wan YH, Jian Z, Wen ZH, Wang YY, Han S, Duan YB, Xing JL, Zhu JL, Hu SJ (2004) Synaptic transmission of chaotic spike trains between primary afferent fiber and spinal dorsal horn neuron in the rat. Neuroscience 125:1051–1060PubMedCrossRefGoogle Scholar
  69. Wang D, Mo J, Zhao XY, Gu HG, Qu SX, Ren W (2010) An intermittent chaotic neural firing characterized by non-smooth like features. Chin Phys Lett 27:070503CrossRefGoogle Scholar
  70. Wu SG, He DR (2000) A new feature in some quasi-discontinuous system. Chin Phys Lett 17:398–400CrossRefGoogle Scholar
  71. Wu SG, He DR (2001) Characteristics of period-doubling bifurcation cascades in quasi-discontinuous systems. Commun Theor Phys 35:275–282Google Scholar
  72. Wu XB, Mo J, Yang MH, Zheng QH, Gu HG, Ren W (2008) Two different bifurcation scenarios in neural firing rhythms discovered in biological experiments by adjusting two parameters. Chin Phys Lett 25:2799–2802CrossRefGoogle Scholar
  73. Xie Y, Xiao W (1990) Electrophysioiogical evidence for hyperalgesia in the peripheral neuropathy. Sci China (Series B) 33:663–672Google Scholar
  74. Xu YL, Li L, Yang MH, Liu ZQ, Liu HJ, Gu HG, Ren W (2007) Three cases of the bifurcation from period 1 to period 2 bursting in theoretical and experimental neural models. Dyn Contin Discr Impul Syst 14(S5):35–40Google Scholar
  75. Yang ZQ, Lu QS (2008) The bifurcation structure of firing pattern transitions in the Chay neuronal pacemaker model. J Biol Syst 16:33–49CrossRefGoogle Scholar
  76. Yang MH, An SC, Gu HG, Liu ZQ, Ren W (2006) Understanding of physiological neural firing patterns through dynamical bifurcation machineries. NeuroReport 17:995–999PubMedCrossRefGoogle Scholar
  77. Yang MH, Liu ZQ, Li L, Xu YL, Liu HJ, Gu HG, Ren W (2009) Identifying distinct stochastic dynamics from chaos: a study on multimodal neural firing patterns. Intern J Bifur Chaos Appl Sci Eng 19:453–485CrossRefGoogle Scholar
  78. Zhao XY, Song SL, Wei CL, Gu HG, Ren W (2010) The transition from neural bursting lying in a period adding bifurcation scenario to spiking rhythm. Acta Biophys Sin 26:61–72 (in Chinese)Google Scholar
  79. Zheng QH, Liu ZQ, Yang MH, Wu XB, Gu HG, Ren W (2009) Qualitatively different bifurcation scenarios observed in the firing of identical nerve fibers. Phys Lett A 373:540–545CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina
  2. 2.College of Life ScienceShaanxi Normal UniversityXi’anChina
  3. 3.Science and Training Center of Chinese AstronauticsBeijingChina

Personalised recommendations